These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 18682244)
1. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Murshed R; Lopez-Lauri F; Sallanon H Anal Biochem; 2008 Dec; 383(2):320-2. PubMed ID: 18682244 [TBL] [Abstract][Full Text] [Related]
2. Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Garnczarska M Plant Physiol Biochem; 2005 Jun; 43(6):583-90. PubMed ID: 15975806 [TBL] [Abstract][Full Text] [Related]
3. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Talaat NB Plant Physiol Biochem; 2014 Jul; 80():136-43. PubMed ID: 24755360 [TBL] [Abstract][Full Text] [Related]
4. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Jimenez A; Creissen G; Kular B; Firmin J; Robinson S; Verhoeyen M; Mullineaux P Planta; 2002 Mar; 214(5):751-8. PubMed ID: 11882944 [TBL] [Abstract][Full Text] [Related]
5. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Sytykiewicz H Int J Mol Sci; 2016 Feb; 17(3):268. PubMed ID: 26907270 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions. Costa JH; Roque ALM; Aziz S; Dos Santos CP; Germano TA; Batista MC; Thiers KLL; da Cruz Saraiva KD; Arnholdt-Schmitt B Int J Biol Macromol; 2021 Sep; 187():528-543. PubMed ID: 34302870 [TBL] [Abstract][Full Text] [Related]
7. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Saruhan N; Terzi R; Saglam A; Kadioglu A Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740 [TBL] [Abstract][Full Text] [Related]
8. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Kuzniak E; Skłodowska M Planta; 2005 Sep; 222(1):192-200. PubMed ID: 15843961 [TBL] [Abstract][Full Text] [Related]
9. Hypobaric Treatment Effects on Chilling Injury, Mitochondrial Dysfunction, and the Ascorbate-Glutathione (AsA-GSH) Cycle in Postharvest Peach Fruit. Song L; Wang J; Shafi M; Liu Y; Wang J; Wu J; Wu A J Agric Food Chem; 2016 Jun; 64(22):4665-74. PubMed ID: 27195461 [TBL] [Abstract][Full Text] [Related]
10. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. Gest N; Garchery C; Gautier H; Jiménez A; Stevens R Plant Biotechnol J; 2013 Apr; 11(3):344-54. PubMed ID: 23130940 [TBL] [Abstract][Full Text] [Related]
11. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Li G; Peng X; Wei L; Kang G Gene; 2013 Oct; 529(2):321-5. PubMed ID: 23948081 [TBL] [Abstract][Full Text] [Related]
12. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress. Shu DF; Wang LY; Duan M; Deng YS; Meng QW Plant Physiol Biochem; 2011 Oct; 49(10):1228-37. PubMed ID: 21530286 [TBL] [Abstract][Full Text] [Related]
13. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. Jiao H; Wang SY J Agric Food Chem; 2000 Nov; 48(11):5672-6. PubMed ID: 11087537 [TBL] [Abstract][Full Text] [Related]
14. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Haroldsen VM; Chi-Ham CL; Kulkarni S; Lorence A; Bennett AB Plant Physiol Biochem; 2011 Oct; 49(10):1244-9. PubMed ID: 21875809 [TBL] [Abstract][Full Text] [Related]
15. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Mittova V; Guy M; Tal M; Volokita M Free Radic Res; 2002 Feb; 36(2):195-202. PubMed ID: 11999388 [TBL] [Abstract][Full Text] [Related]
16. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle. Singh S; Singh A; Srivastava PK; Prasad SM J Photochem Photobiol B; 2018 Jan; 178():76-84. PubMed ID: 29125985 [TBL] [Abstract][Full Text] [Related]
17. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Song XS; Hu WH; Mao WH; Ogweno JO; Zhou YH; Yu JQ Plant Physiol Biochem; 2005 Dec; 43(12):1082-8. PubMed ID: 16386429 [TBL] [Abstract][Full Text] [Related]
18. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Yin G; Xin X; Song C; Chen X; Zhang J; Wu S; Li R; Liu X; Lu X Plant Physiol Biochem; 2014 Jul; 80():1-9. PubMed ID: 24705135 [TBL] [Abstract][Full Text] [Related]
19. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). Wang J; Zhong X; Zhu K; Lv J; Lv X; Li F; Shi Z Environ Sci Pollut Res Int; 2018 Jul; 25(19):19012-19027. PubMed ID: 29721793 [TBL] [Abstract][Full Text] [Related]
20. The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl. Li C; Wei M; Ge Y; Zhao J; Chen Y; Hou J; Cheng Y; Chen J; Li J Food Chem; 2020 Mar; 308():125663. PubMed ID: 31655474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]