BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18682733)

  • 1. Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.
    Vinci G; Xia X; Veitia RA
    PLoS One; 2008 Aug; 3(8):e2883. PubMed ID: 18682733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated molecular evolution of insect orthologues of ERG28/C14orf1: a link with ecdysteroid metabolism?
    Veitia RA; Hurst LD
    J Genet; 2001 Apr; 80(1):17-21. PubMed ID: 11910120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans.
    Kuervers LM; Jones CL; O'Neil NJ; Baillie DL
    Mol Genet Genomics; 2003 Nov; 270(2):121-31. PubMed ID: 12905072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Reconfiguration in C. elegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom.
    Shamsuzzama ; Lebedev R; Trabelcy B; Langier Goncalves I; Gerchman Y; Sapir A
    Curr Biol; 2020 Aug; 30(15):3031-3038.e7. PubMed ID: 32559444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster.
    Rhomberg S; Fuchsluger C; Rendić D; Paschinger K; Jantsch V; Kosma P; Wilson IB
    FEBS J; 2006 May; 273(10):2244-56. PubMed ID: 16650000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons.
    Remm M; Storm CE; Sonnhammer EL
    J Mol Biol; 2001 Dec; 314(5):1041-52. PubMed ID: 11743721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes.
    Schrimpf SP; Weiss M; Reiter L; Ahrens CH; Jovanovic M; Malmström J; Brunner E; Mohanty S; Lercher MJ; Hunziker PE; Aebersold R; von Mering C; Hengartner MO
    PLoS Biol; 2009 Mar; 7(3):e48. PubMed ID: 19260763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans.
    Campbell HD; Schimansky T; Claudianos C; Ozsarac N; Kasprzak AB; Cotsell JN; Young IG; de Couet HG; Miklos GL
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11386-90. PubMed ID: 8248259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic changes during disturbance of cholesterol metabolism by azacoprostane treatment in Caenorhabditis elegans.
    Choi BK; Chitwood DJ; Paik YK
    Mol Cell Proteomics; 2003 Oct; 2(10):1086-95. PubMed ID: 12904448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The putative cell cycle gene, enhancer of rudimentary, encodes a highly conserved protein found in plants and animals.
    Gelsthorpe M; Pulumati M; McCallum C; Dang-Vu K; Tsubota SI
    Gene; 1997 Feb; 186(2):189-95. PubMed ID: 9074495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfeit locus gene homologs are widely distributed in invertebrate genomes.
    Armes N; Fried M
    Mol Cell Biol; 1996 Oct; 16(10):5591-6. PubMed ID: 8816471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CUP-1 is a novel protein involved in dietary cholesterol uptake in Caenorhabditis elegans.
    Valdes VJ; Athie A; Salinas LS; Navarro RE; Vaca L
    PLoS One; 2012; 7(3):e33962. PubMed ID: 22479487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium.
    Voght SP; Fluegel ML; Andrews LA; Pallanck LJ
    Cell Metab; 2007 Mar; 5(3):195-205. PubMed ID: 17339027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologs of the Hh signalling network in C. elegans.
    Bürglin TR; Kuwabara PE
    WormBook; 2006 Jan; ():1-14. PubMed ID: 18050469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative contributions of intrinsic structural-functional constraints and translation rate to the evolution of protein-coding genes.
    Wolf YI; Gopich IV; Lipman DJ; Koonin EV
    Genome Biol Evol; 2010 Jul; 2():190-9. PubMed ID: 20624725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of vertebrate and invertebrate Delta/Serrate/LAG-2 (DSL) proteins.
    Lissemore JL; Starmer WT
    Mol Phylogenet Evol; 1999 Mar; 11(2):308-19. PubMed ID: 10191075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity.
    Vogel C; Teichmann SA; Chothia C
    Development; 2003 Dec; 130(25):6317-28. PubMed ID: 14623821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein.
    Hua X; Nohturfft A; Goldstein JL; Brown MS
    Cell; 1996 Nov; 87(3):415-26. PubMed ID: 8898195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sterol-defined system for quantitative studies of sterol metabolism in
    Trabelcy B; Gerchman Y; Sapir A
    STAR Protoc; 2021 Sep; 2(3):100710. PubMed ID: 34409305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.