These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18682801)

  • 1. A dynamic stochastic model for DNA replication initiation in early embryos.
    Goldar A; Labit H; Marheineke K; Hyrien O
    PLoS One; 2008 Aug; 3(8):e2919. PubMed ID: 18682801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem.
    Yang SC; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041917. PubMed ID: 18999465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus.
    Platel M; Goldar A; Wiggins JM; Barbosa P; Libeau P; Priam P; Narassimprakash H; Grodzenski X; Marheineke K
    PLoS One; 2015; 10(6):e0129090. PubMed ID: 26046346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint.
    Marheineke K; Hyrien O
    J Biol Chem; 2004 Jul; 279(27):28071-81. PubMed ID: 15123715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos.
    Lucas I; Chevrier-Miller M; Sogo JM; Hyrien O
    J Mol Biol; 2000 Feb; 296(3):769-86. PubMed ID: 10677280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal temporal profile of replication origin activation in eukaryotes.
    Goldar A; Marsolier-Kergoat MC; Hyrien O
    PLoS One; 2009 Jun; 4(6):e5899. PubMed ID: 19521533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation.
    Arbona JM; Goldar A; Hyrien O; Arneodo A; Audit B
    Elife; 2018 Jun; 7():. PubMed ID: 29856315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment.
    Jun S; Herrick J; Bensimon A; Bechhoefer J
    Cell Cycle; 2004 Feb; 3(2):223-9. PubMed ID: 14712093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts.
    Marheineke K; Hyrien O
    J Biol Chem; 2001 May; 276(20):17092-100. PubMed ID: 11279043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.
    Guilbaud G; Rappailles A; Baker A; Chen CL; Arneodo A; Goldar A; d'Aubenton-Carafa Y; Thermes C; Audit B; Hyrien O
    PLoS Comput Biol; 2011 Dec; 7(12):e1002322. PubMed ID: 22219720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Xenopus laevis replicates DNA reliably even though its origins of replication are located and initiated stochastically.
    Bechhoefer J; Marshall B
    Phys Rev Lett; 2007 Mar; 98(9):098105. PubMed ID: 17359202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Is the replicon model applicable to higher eukaryotes?].
    de Recondo AM
    C R Acad Sci III; 1998 Dec; 321(12):961-78. PubMed ID: 9929779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts.
    Labit H; Perewoska I; Germe T; Hyrien O; Marheineke K
    Nucleic Acids Res; 2008 Oct; 36(17):5623-34. PubMed ID: 18765475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of eukaryotic DNA replication.
    Hyrien O; Goldar A
    Chromosome Res; 2010 Jan; 18(1):147-61. PubMed ID: 20205354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of DNA combing to study DNA replication in Xenopus and human cell-free systems.
    Marheineke K; Goldar A; Krude T; Hyrien O
    Methods Mol Biol; 2009; 521():575-603. PubMed ID: 19563130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of DNA replication by anomalous reaction-diffusion kinetics.
    Gauthier MG; Bechhoefer J
    Phys Rev Lett; 2009 Apr; 102(15):158104. PubMed ID: 19518676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication origins fire stochastically in fission yeast.
    Patel PK; Arcangioli B; Baker SP; Bensimon A; Rhind N
    Mol Biol Cell; 2006 Jan; 17(1):308-16. PubMed ID: 16251353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling of chromatin loops does not account for specification of replication origins during Xenopus development.
    Maric C; Hyrien O
    Chromosoma; 1998 Jun; 107(3):155-65. PubMed ID: 9639653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of replication and gene regulation.
    Taylor JH
    Mol Cell Biochem; 1984; 61(2):99-109. PubMed ID: 6727871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.