These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18682811)

  • 41. Light induced and circadian effects on retinal photoreceptor cell crystallins.
    Organisciak D; Darrow R; Barsalou L; Rapp C; McDonald B; Wong P
    Photochem Photobiol; 2011; 87(1):151-9. PubMed ID: 21091955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A combinatorial code for mRNA 3'-UTR-mediated translational control in the mouse oocyte.
    Dai XX; Jiang JC; Sha QQ; Jiang Y; Ou XH; Fan HY
    Nucleic Acids Res; 2019 Jan; 47(1):328-340. PubMed ID: 30335155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome.
    Reverte CG; Ahearn MD; Hake LE
    Dev Biol; 2001 Mar; 231(2):447-58. PubMed ID: 11237472
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNA in Aplysia neurons.
    Liu J; Schwartz JH
    Brain Res; 2003 Jan; 959(1):68-76. PubMed ID: 12480159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons.
    Wells DG; Dong X; Quinlan EM; Huang YS; Bear MF; Richter JD; Fallon JR
    J Neurosci; 2001 Dec; 21(24):9541-8. PubMed ID: 11739565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DAZL and CPEB1 regulate mRNA translation synergistically during oocyte maturation.
    Sousa Martins JP; Liu X; Oke A; Arora R; Franciosi F; Viville S; Laird DJ; Fung JC; Conti M
    J Cell Sci; 2016 Mar; 129(6):1271-82. PubMed ID: 26826184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retinoid cycling proteins redistribute in light-/dark-adapted octopus retinas.
    Robles LJ; Camacho JL; Torres SC; Flores A; Fariss RN; Matsumoto B
    J Comp Neurol; 1995 Aug; 358(4):605-14. PubMed ID: 7593753
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses.
    Wu L; Wells D; Tay J; Mendis D; Abbott MA; Barnitt A; Quinlan E; Heynen A; Fallon JR; Richter JD
    Neuron; 1998 Nov; 21(5):1129-39. PubMed ID: 9856468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The early noncoding region of human papillomavirus type 16 is regulated by cytoplasmic polyadenylation factors.
    Glahder JA; Kristiansen K; Durand M; Vinther J; Norrild B
    Virus Res; 2010 May; 149(2):217-23. PubMed ID: 20144904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction.
    Mendez R; Barnard D; Richter JD
    EMBO J; 2002 Apr; 21(7):1833-44. PubMed ID: 11927567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequential Functions of CPEB1 and CPEB4 Regulate Pathologic Expression of Vascular Endothelial Growth Factor and Angiogenesis in Chronic Liver Disease.
    Calderone V; Gallego J; Fernandez-Miranda G; Garcia-Pras E; Maillo C; Berzigotti A; Mejias M; Bava FA; Angulo-Urarte A; Graupera M; Navarro P; Bosch J; Fernandez M; Mendez R
    Gastroenterology; 2016 Apr; 150(4):982-97.e30. PubMed ID: 26627607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins.
    Wu L; Good PJ; Richter JD
    Mol Cell Biol; 1997 Nov; 17(11):6402-9. PubMed ID: 9343402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The expression of CPEB proteins is sequentially regulated during zebrafish oogenesis and embryogenesis.
    O'Connell ML; Cavallo WC; Firnberg M
    Mol Reprod Dev; 2014 Apr; 81(4):376-87. PubMed ID: 24474627
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Long-Term Memory Formation in
    Kozlov EN; Tokmatcheva EV; Khrustaleva AM; Grebenshchikov ES; Deev RV; Gilmutdinov RA; Lebedeva LA; Zhukova M; Savvateeva-Popova EV; Schedl P; Shidlovskii YV
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of cellular senescence by CPEB.
    Groisman I; Ivshina M; Marin V; Kennedy NJ; Davis RJ; Richter JD
    Genes Dev; 2006 Oct; 20(19):2701-12. PubMed ID: 17015432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CPEB: a life in translation.
    Richter JD
    Trends Biochem Sci; 2007 Jun; 32(6):279-85. PubMed ID: 17481902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive analysis of the expression of crystallins in mouse retina.
    Xi J; Farjo R; Yoshida S; Kern TS; Swaroop A; Andley UP
    Mol Vis; 2003 Aug; 9():410-9. PubMed ID: 12949468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis.
    Rosenstierne MW; Vinther J; Mittler G; Larsen L; Mann M; Norrild B
    Anticancer Res; 2008; 28(5A):2553-9. PubMed ID: 19035278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein.
    Nakahata S; Katsu Y; Mita K; Inoue K; Nagahama Y; Yamashita M
    J Biol Chem; 2001 Jun; 276(24):20945-53. PubMed ID: 11283000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.