These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 18683057)
21. Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: Phytoseiidae), in laboratory bioassays. Gadino AN; Walton VM; Dreves AJ J Econ Entomol; 2011 Jun; 104(3):970-7. PubMed ID: 21735918 [TBL] [Abstract][Full Text] [Related]
22. Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Roda A; Nyrop J; Dicke M; English-Loeb G Oecologia; 2000 Nov; 125(3):428-435. PubMed ID: 28547338 [TBL] [Abstract][Full Text] [Related]
23. Airborne pollen can affect the abundance of predatory mites in vineyards: implications for conservation biological control strategies. Malagnini V; Pozzebon A; Facchin P; Paganelli A; Duso C Pest Manag Sci; 2022 May; 78(5):1963-1975. PubMed ID: 35088932 [TBL] [Abstract][Full Text] [Related]
24. Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory mite Typhlodromus pyri (Acarina: Phytoseiidae). Dicke M; Sabelis MW; van den Berg H Oecologia; 1989 Nov; 81(3):302-309. PubMed ID: 28311180 [TBL] [Abstract][Full Text] [Related]
25. Ricoseius loxocheles, a phytoseiid mite that feeds on coffee leaf rust. Oliveira CM; Ferreira JA; Oliveira RM; Santos FO; Pallini A Exp Appl Acarol; 2014 Oct; 64(2):223-33. PubMed ID: 24744058 [TBL] [Abstract][Full Text] [Related]
26. Temperature-related development and population parameters for Typhlodromus pyri (Acari: Phytoseiidae) found in Oregon vineyards. Gadino AN; Walton VM Exp Appl Acarol; 2012 Sep; 58(1):1-10. PubMed ID: 22527839 [TBL] [Abstract][Full Text] [Related]
27. Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Grostal R; O'Dowd DJ Oecologia; 1994 Apr; 97(3):308-315. PubMed ID: 28313624 [TBL] [Abstract][Full Text] [Related]
28. The predatory mite Typhlodromus pyri (Acari: Phytoseiidae) causes feeding scars on leaves and fruits of apple. Sengonca C; Khan IA; Blaeser P Exp Appl Acarol; 2004; 33(1-2):45-53. PubMed ID: 15285137 [TBL] [Abstract][Full Text] [Related]
29. Genome-Wide Association Study Reveals Genomic Region Associated with Mite-Recruitment Phenotypes in the Domesticated Grapevine ( LaPlante ER; Fleming MB; Migicovsky Z; Weber MG Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34208920 [TBL] [Abstract][Full Text] [Related]
30. Alterations induced by Colomerus vitis on the structural and physiological leaf features of two grape cultivars. Guedes LM; Henríquez IAA; Sanhueza C; Rodríguez-Cerda L; Figueroa C; Gavilán E; Aguilera N Exp Appl Acarol; 2024 Feb; 92(2):183-201. PubMed ID: 38358409 [TBL] [Abstract][Full Text] [Related]
31. Simulating effects of environmental factors on biological control of Tetranychus urticae by Typhlodromus pyri in apple orchards. Hardman JM; van der Werf W; Blatt SE; Franklin JL; Karsten R; Teismann H Exp Appl Acarol; 2013 Jun; 60(2):181-203. PubMed ID: 23299914 [TBL] [Abstract][Full Text] [Related]
32. Erinea formation on Quercus ilex leaves: anatomical, physiological and chemical responses of leaf trichomes against mite attack. Karioti A; Tooulakou G; Bilia AR; Psaras GK; Karabourniotis G; Skaltsa H Phytochemistry; 2011 Feb; 72(2-3):230-7. PubMed ID: 21131012 [TBL] [Abstract][Full Text] [Related]
33. Role of eggplant trichome in whitefly oviposition and its relevance to biological control under greenhouse conditions. Rodríguez E; Porcel M; Lara L; Cabello T; Gámez M; Navarro L; Domingo A; Burguillo FJ; Del Mar Téllez M Sci Rep; 2024 Sep; 14(1):22718. PubMed ID: 39349953 [TBL] [Abstract][Full Text] [Related]
34. Effects of acaricides, pyrethroids and predator distributions on populations of Tetranychus urticae in apple orchards. Hardman JM; Franklin JL; Beaulieu F; Bostanian NJ Exp Appl Acarol; 2007; 43(4):235-53. PubMed ID: 18008172 [TBL] [Abstract][Full Text] [Related]
35. The response of three species of phytoseiid mite (Acari: Phytoseiidae) to synthetic pyrethroid pesticides in the laboratory and the field. Kakoki S; Kamimuro T; Ikenoue Y; Inokuchi M; Tsuda K; Sakamaki Y Exp Appl Acarol; 2019 Jan; 77(1):27-41. PubMed ID: 30569393 [TBL] [Abstract][Full Text] [Related]
36. Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Gnanvossou D; Yaninek JS; Hanna R; Dicke M Exp Appl Acarol; 2003; 30(4):265-78. PubMed ID: 14756392 [TBL] [Abstract][Full Text] [Related]
37. Intraguild predation and feeding preferences in three species of phytoseiid mite used for biological control. Hatherly IS; Bale JS; Walters KF Exp Appl Acarol; 2005; 37(1-2):43-55. PubMed ID: 16180071 [TBL] [Abstract][Full Text] [Related]
38. Ambulatory dispersal of Typhlodromus (Anthoseius) recki Wainstein (Acari: Phytoseiidae) along Solanceae stem. Tixier MS; Raeckelboom A; Tabary L; Douin M; Navajas M; Navia D Exp Appl Acarol; 2024 Oct; 93(3):563-582. PubMed ID: 39088130 [TBL] [Abstract][Full Text] [Related]
39. Geotaxis and leaf-surface preferences mitigate negative effects of a predatory mite on an herbivorous mite. Sudo M; Osakabe M Exp Appl Acarol; 2013 Apr; 59(4):409-20. PubMed ID: 23011108 [TBL] [Abstract][Full Text] [Related]
40. Typhlodromus pyri and Euseius finlandicus (Acari: Phytoseiidae) as potential biocontrol agents against spider mites (Acari: Tetranychidae) inhabiting willows: laboratory studies on predator development and reproduction on four diets. Puchalska EK; Kozak M Exp Appl Acarol; 2016 Jan; 68(1):39-53. PubMed ID: 26530991 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]