These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Viamajala S; Smith WA; Sani RK; Apel WA; Petersen JN; Neal AL; Roberto FF; Newby DT; Peyton BM Bioresour Technol; 2007 Feb; 98(3):612-22. PubMed ID: 16644211 [TBL] [Abstract][Full Text] [Related]
3. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474 [TBL] [Abstract][Full Text] [Related]
4. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488 [TBL] [Abstract][Full Text] [Related]
5. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063 [TBL] [Abstract][Full Text] [Related]
7. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena. Xu W; Liu Y; Zeng G; Li X; Tang C; Yuan X J Hazard Mater; 2005 Nov; 126(1-3):17-22. PubMed ID: 16039044 [TBL] [Abstract][Full Text] [Related]
8. Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Khanal A; Hur HG; Fredrickson JK; Lee JH J Microbiol Biotechnol; 2021 Nov; 31(11):1519-1525. PubMed ID: 34489371 [TBL] [Abstract][Full Text] [Related]
9. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration. Mak MS; Lo IM; Liu T Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698 [TBL] [Abstract][Full Text] [Related]
10. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. Jang JH; Dempsey BA; Burgos WD Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438 [TBL] [Abstract][Full Text] [Related]
11. [Reduction of chromate, selenite, tellurite, and iron(III) by the moderately thermophilic bacterium Bacillus thermoamylovorans SKC1]. Slobodkina GB; Bonch-Osmolovskaia EA; Slobodkin AI Mikrobiologiia; 2007; 76(5):602-7. PubMed ID: 18069319 [TBL] [Abstract][Full Text] [Related]
12. Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Ganguli A; Tripathi AK Appl Microbiol Biotechnol; 2002 Mar; 58(3):416-20. PubMed ID: 11935196 [TBL] [Abstract][Full Text] [Related]
13. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972 [TBL] [Abstract][Full Text] [Related]
14. Influence of inorganic anion on Cr(VI) photo-reduction in the presence of ferric ion. Tzou YM; Hsu CL; Chen CC; Chen JH; Wu JJ; Tseng KJ J Hazard Mater; 2008 Aug; 156(1-3):374-80. PubMed ID: 18249065 [TBL] [Abstract][Full Text] [Related]
15. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Thacker U; Parikh R; Shouche Y; Madamwar D Bioresour Technol; 2007 May; 98(8):1541-7. PubMed ID: 16931000 [TBL] [Abstract][Full Text] [Related]
16. Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid. Mak MS; Rao P; Lo IM Environ Pollut; 2011 Feb; 159(2):377-82. PubMed ID: 21130550 [TBL] [Abstract][Full Text] [Related]
17. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
18. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Oh YJ; Song H; Shin WS; Choi SJ; Kim YH Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667 [TBL] [Abstract][Full Text] [Related]
19. A mechanism study of light-induced Cr(VI) reduction in an acidic solution. Wang SL; Chen CC; Tzou YM; Hsu CL; Chen JH; Lin CF J Hazard Mater; 2009 May; 164(1):223-8. PubMed ID: 18789578 [TBL] [Abstract][Full Text] [Related]