These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18683881)

  • 1. Subrupture tendon fatigue damage.
    Fung DT; Wang VM; Laudier DM; Shine JH; Basta-Pljakic J; Jepsen KJ; Schaffler MB; Flatow EL
    J Orthop Res; 2009 Feb; 27(2):264-273. PubMed ID: 18683881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanical effects of in vivo fatigue damage induction on murine tendon.
    Sereysky JB; Andarawis-Puri N; Jepsen KJ; Flatow EL
    J Orthop Res; 2012 Jun; 30(6):965-72. PubMed ID: 22072573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue loading of tendon.
    Shepherd JH; Screen HR
    Int J Exp Pathol; 2013 Aug; 94(4):260-70. PubMed ID: 23837793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level.
    Shepherd JH; Riley GP; Screen HR
    J Mech Behav Biomed Mater; 2014 Oct; 38():163-72. PubMed ID: 25001495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low stress tendon fatigue is a relatively rapid process in the context of overuse injuries.
    Parent G; Huppé N; Langelier E
    Ann Biomed Eng; 2011 May; 39(5):1535-45. PubMed ID: 21287276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationships between cyclic fatigue loading, changes in initial mechanical properties, and the in vivo temporal mechanical response of the rat patellar tendon.
    Andarawis-Puri N; Sereysky JB; Jepsen KJ; Flatow EL
    J Biomech; 2012 Jan; 45(1):59-65. PubMed ID: 22055428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic amplitude-modulated stretching of rabbit flexor digitorum profundus tendons reduces stiffness compared to cyclic loading but does not affect tenocyte metabolism.
    Steiner TH; Bürki A; Ferguson SJ; Gantenbein-Ritter B
    BMC Musculoskelet Disord; 2012 Nov; 13():222. PubMed ID: 23150982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic mechanisms of tendon fatigue damage.
    Neviaser A; Andarawis-Puri N; Flatow E
    J Shoulder Elbow Surg; 2012 Feb; 21(2):158-63. PubMed ID: 22244058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading.
    Lee AH; Szczesny SE; Santare MH; Elliott DM
    Acta Biomater; 2017 Jul; 57():363-372. PubMed ID: 28435080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tendon fatigue in response to mechanical loading.
    Andarawis-Puri N; Flatow EL
    J Musculoskelet Neuronal Interact; 2011 Jun; 11(2):106-14. PubMed ID: 21625047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading.
    Adekanmbi I; Zargar N; Hulley P
    Connect Tissue Res; 2017 Mar; 58(2):162-171. PubMed ID: 27294971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early response to tendon fatigue damage accumulation in a novel in vivo model.
    Fung DT; Wang VM; Andarawis-Puri N; Basta-Pljakic J; Li Y; Laudier DM; Sun HB; Jepsen KJ; Schaffler MB; Flatow EL
    J Biomech; 2010 Jan; 43(2):274-9. PubMed ID: 19939387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of pathological equine superficial digital flexor tendons.
    Crevier-Denoix N; Collobert C; Pourcelot P; Denoix JM; Sanaa M; Geiger D; Bernard N; Ribot X; Bortolussi C; Bousseau B
    Equine Vet J Suppl; 1997 May; (23):23-6. PubMed ID: 9354282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale mechanisms of tendon fatigue damage progression and severity are strain and cycle dependent.
    Ros SJ; Muljadi PM; Flatow EL; Andarawis-Puri N
    J Biomech; 2019 Mar; 85():148-156. PubMed ID: 30732906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tendon extracellular matrix damage detection and quantification using automated edge detection analysis.
    Ros SJ; Andarawis-Puri N; Flatow EL
    J Biomech; 2013 Nov; 46(16):2844-7. PubMed ID: 24112781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage.
    Freedman BR; Zuskov A; Sarver JJ; Buckley MR; Soslowsky LJ
    J Orthop Res; 2015 Jun; 33(6):904-10. PubMed ID: 25773654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributing a fixed amount of cyclic loading to tendon explants over longer periods induces greater cellular and mechanical responses.
    Devkota AC; Tsuzaki M; Almekinders LC; Banes AJ; Weinhold PS
    J Orthop Res; 2007 Aug; 25(8):1078-86. PubMed ID: 17457818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second harmonic generation imaging and Fourier transform spectral analysis reveal damage in fatigue-loaded tendons.
    Fung DT; Sereysky JB; Basta-Pljakic J; Laudier DM; Huq R; Jepsen KJ; Schaffler MB; Flatow EL
    Ann Biomed Eng; 2010 May; 38(5):1741-51. PubMed ID: 20232150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.