BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18683950)

  • 1. Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2.
    Sweet SM; Mardakheh FK; Ryan KJ; Langton AJ; Heath JK; Cooper HJ
    Anal Chem; 2008 Sep; 80(17):6650-7. PubMed ID: 18683950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategy for the identification of sites of phosphorylation in proteins: neutral loss triggered electron capture dissociation.
    Sweet SM; Creese AJ; Cooper HJ
    Anal Chem; 2006 Nov; 78(21):7563-9. PubMed ID: 17073427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron capture dissociation of singly and multiply phosphorylated peptides.
    Stensballe A; Jensen ON; Olsen JV; Haselmann KF; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(19):1793-800. PubMed ID: 11006587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line liquid chromatography electron capture dissociation for the characterization of phosphorylation sites in proteins.
    Sweet SM; Cooper HJ
    Methods Mol Biol; 2009; 527():191-9, x. PubMed ID: 19241014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis.
    Wu HY; Tseng VS; Liao PC
    J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhosTShunter: a fast and reliable tool to detect phosphorylated peptides in liquid chromatography Fourier transform tandem mass spectrometry data sets.
    Köcher T; Savitski MM; Nielsen ML; Zubarev RA
    J Proteome Res; 2006 Mar; 5(3):659-68. PubMed ID: 16512682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid chromatography-atmospheric pressure electron capture dissociation mass spectrometry for the structural analysis of peptides and proteins.
    Robb DB; Rogalski JC; Kast J; Blades MW
    Anal Chem; 2012 May; 84(9):4221-6. PubMed ID: 22494041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphopeptide fragmentation and analysis by mass spectrometry.
    Boersema PJ; Mohammed S; Heck AJ
    J Mass Spectrom; 2009 Jun; 44(6):861-78. PubMed ID: 19504542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
    Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT
    Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis.
    Schlosser A; Vanselow JT; Kramer A
    Anal Chem; 2005 Aug; 77(16):5243-50. PubMed ID: 16097765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome.
    Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R
    J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of two-dimensional phosphopeptide maps by electrospray ionization mass spectrometry of recovered peptides.
    Affolter M; Watts JD; Krebs DL; Aebersold R
    Anal Biochem; 1994 Nov; 223(1):74-81. PubMed ID: 7695105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation.
    Kweon HK; Håkansson K
    J Proteome Res; 2008 Feb; 7(2):749-55. PubMed ID: 18171022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation.
    Bergström Lind S; Molin M; Savitski MM; Emilsson L; Aström J; Hedberg L; Adams C; Nielsen ML; Engström A; Elfineh L; Andersson E; Zubarev RA; Pettersson U
    J Proteome Res; 2008 Jul; 7(7):2897-910. PubMed ID: 18543961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry.
    Lim KB; Kassel DB
    Anal Biochem; 2006 Jul; 354(2):213-9. PubMed ID: 16750159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of phosphorylation sites of nuclear corepressor receptor interacting protein 140 by liquid chromatography-tandem mass spectroscopy.
    Huq MD; Khan SA; Park SW; Wei LN
    Proteomics; 2005 May; 5(8):2157-66. PubMed ID: 15846843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-dependent electron capture dissociation FT-ICR mass spectrometry for proteomic analyses.
    Cooper HJ; Akbarzadeh S; Heath JK; Zeller M
    J Proteome Res; 2005; 4(5):1538-44. PubMed ID: 16212404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of histidine phosphorylation using tandem MS and ion-electron reactions.
    Kleinnijenhuis AJ; Kjeldsen F; Kallipolitis B; Haselmann KF; Jensen ON
    Anal Chem; 2007 Oct; 79(19):7450-6. PubMed ID: 17822303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry.
    Dai J; Jin WH; Sheng QH; Shieh CH; Wu JR; Zeng R
    J Proteome Res; 2007 Jan; 6(1):250-62. PubMed ID: 17203969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.