These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 18684544)

  • 1. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems.
    Sousa AI; Lillebø AI; Caçador I; Pardal MA
    Environ Pollut; 2008 Dec; 156(3):628-35. PubMed ID: 18684544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2010; 61(4-6):215-23. PubMed ID: 20304438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.
    Caetano M; Fonseca N; Cesário Carlos Vale R
    Sci Total Environ; 2007 Jul; 380(1-3):84-92. PubMed ID: 17320933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication.
    Coelho JP; Pereira ME; Duarte AC; Pardal MA
    Mar Pollut Bull; 2009 Aug; 58(3):358-65. PubMed ID: 19062048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal).
    Pereira P; Caçador I; Vale C; Caetano M; Costa AL
    Sci Total Environ; 2007 Jul; 380(1-3):93-101. PubMed ID: 17316771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh.
    Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C
    Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes.
    Curado G; Rubio-Casal AE; Figueroa E; Grewell BJ; Castillo JM
    Environ Monit Assess; 2013 Oct; 185(10):8439-49. PubMed ID: 23591677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.
    Reboreda R; Caçador I
    Mar Environ Res; 2008 Feb; 65(1):77-84. PubMed ID: 17935772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal variability of denitrification efficiency in northern salt marshes: an example from the St. Lawrence Estuary.
    Poulin P; Pelletier E; Saint-Louis R
    Mar Environ Res; 2007 Jun; 63(5):490-505. PubMed ID: 17276505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary).
    Santos L; Cunha A; Silva H; Caçador I; Dias JM; Almeida A
    FEMS Microbiol Ecol; 2007 Jun; 60(3):429-41. PubMed ID: 17374125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of metals in Spartina alterniflora salt marshes from a South American estuary.
    Negrin VL; Botté SE; La Colla NS; Marcovecchio JE
    Sci Total Environ; 2019 Feb; 649():808-820. PubMed ID: 30176491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).
    Duarte B; Caetano M; Almeida PR; Vale C; Caçador I
    Environ Pollut; 2010 May; 158(5):1661-8. PubMed ID: 20036450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment.
    Cambrollé J; Redondo-Gómez S; Mateos-Naranjo E; Figueroa ME
    Mar Pollut Bull; 2008 Dec; 56(12):2037-42. PubMed ID: 18805558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunistic macroalgae metrics for transitional waters. Testing tools to assess ecological quality status in Portugal.
    Patrício J; Neto JM; Teixeira H; Marques JC
    Mar Pollut Bull; 2007 Dec; 54(12):1887-96. PubMed ID: 17889036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stock and losses of trace metals from salt marsh plants.
    Caçador I; Caetano M; Duarte B; Vale C
    Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of multiple stressors on the auto-remediation processes occurring in salt marshes.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2011 Jul; 62(7):1584-7. PubMed ID: 21592533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.