These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18684628)

  • 1. Non-convergence of Geant4 hadronic models for 10 and 30 MeV protons in 18O and 14N.
    Chin MP; Spyrou NM
    Appl Radiat Isot; 2009 Mar; 67(3):406-14. PubMed ID: 18684628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of inelastic hadronic processes for 250 MeV proton interactions in tissue and iron using GEANT4.
    Chen Y; Ahmad S
    Radiat Prot Dosimetry; 2009 Aug; 136(1):11-6. PubMed ID: 19689963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental test of Monte Carlo proton transport at grazing incidence in GEANT4, FLUKA and MCNPX.
    Kimstrand P; Tilly N; Ahnesjö A; Traneus E
    Phys Med Biol; 2008 Feb; 53(4):1115-29. PubMed ID: 18263962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geant4 hadronic physics for space radiation environment.
    Ivantchenko AV; Ivanchenko VN; Molina JM; Incerti SL
    Int J Radiat Biol; 2012 Jan; 88(1-2):171-5. PubMed ID: 21830895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy.
    Böhlen TT; Cerutti F; Dosanjh M; Ferrari A; Gudowska I; Mairani A; Quesada JM
    Phys Med Biol; 2010 Oct; 55(19):5833-47. PubMed ID: 20844337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SU-E-T-302: A Simulation Study with Geant4 Investigating the Secondary Prompt Gamma Emissions from Incident 40 MeV Protons Onto Various Materials.
    Lau A; Chen Y; Ahmad S
    Med Phys; 2012 Jun; 39(6Part14):3773. PubMed ID: 28517290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU-E-T-281: Secondary Light-Ions in Carbon-Ion Therapy: A GEANT4 Simulation of LET and Dose Contributions.
    Johnson D; Chen Y; Ahmad S
    Med Phys; 2012 Jun; 39(6Part14):3768. PubMed ID: 28517277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring.
    Dedes G; Pinto M; Dauvergne D; Freud N; Krimmer J; Létang JM; Ray C; Testa E
    Phys Med Biol; 2014 Apr; 59(7):1747-72. PubMed ID: 24619152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy.
    Paganetti H; Jiang H; Parodi K; Slopsema R; Engelsman M
    Phys Med Biol; 2008 Sep; 53(17):4825-53. PubMed ID: 18701772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.
    Peterson SW; Polf J; Bues M; Ciangaru G; Archambault L; Beddar S; Smith A
    Phys Med Biol; 2009 May; 54(10):3217-29. PubMed ID: 19420426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation and polymer gel dosimetry of 60 MeV clinical proton beams for the treatment of ocular tumours.
    Baker CR; Quine TE; Brunt JN; Kacperek A
    Appl Radiat Isot; 2009 Mar; 67(3):402-5. PubMed ID: 18691897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations of nuclear reactions induced by incident protons in the energy range of 100 to 500 MeV in a human body.
    Asano Y; Kariya H; Mori S
    Health Phys; 1988 Nov; 55(5):767-72. PubMed ID: 2846471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study.
    Polf JC; Peterson S; Ciangaru G; Gillin M; Beddar S
    Phys Med Biol; 2009 Feb; 54(3):731-43. PubMed ID: 19131673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation to evaluate the contamination in an energy modulated carbon ion beam for hadron therapy delivered by cyclotron.
    Morone MC; Calabretta L; Cuttone G; Fiorini F
    Phys Med Biol; 2008 Nov; 53(21):6045-53. PubMed ID: 18843170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons.
    Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H
    Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of imaging plate detectors to mono-energetic protons in the range 1-200 MeV.
    Rabhi N; Batani D; Boutoux G; Ducret JE; Jakubowska K; Lantuejoul-Thfoin I; Nauraye C; Patriarca A; Saïd A; Semsoum A; Serani L; Thomas B; Vauzour B
    Rev Sci Instrum; 2017 Nov; 88(11):113301. PubMed ID: 29195357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High energy electron crystal spectrometer.
    Kudyakov T; Jochmann A; Zeil K; Kraft S; Finken KH; Schramm U; Willi O
    Rev Sci Instrum; 2009 Jul; 80(7):076106. PubMed ID: 19655991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms.
    Smekens F; Freud N; Létang JM; Adam JF; Ferrero C; Elleaume H; Bravin A; Estève F; Babot D
    Phys Med Biol; 2009 Aug; 54(15):4671-85. PubMed ID: 19590114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.