These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 18684907)

  • 41. Representation of Stimulus Speed and Direction in Vibrissal-Sensitive Regions of the Trigeminal Nuclei: A Comparison of Single Unit and Population Responses.
    Kaloti AS; Johnson EC; Bresee CS; Naufel SN; Perich MG; Jones DL; Hartmann MJ
    PLoS One; 2016; 11(7):e0158399. PubMed ID: 27463524
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterogeneity in the coding in rat barrel cortex of the velocity of protraction of the macrovibrissae.
    Rajan R; Browning AS; Bourke JL
    Eur J Neurosci; 2007 Apr; 25(8):2383-403. PubMed ID: 17445236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes.
    Knutsen PM; Biess A; Ahissar E
    Neuron; 2008 Jul; 59(1):35-42. PubMed ID: 18614027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions.
    Lichtenstein SH; Carvell GE; Simons DJ
    Somatosens Mot Res; 1990; 7(1):47-65. PubMed ID: 2330787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Variations in vibrissal geometry across the rat mystacial pad: base diameter, medulla, and taper.
    Belli HM; Yang AE; Bresee CS; Hartmann MJ
    J Neurophysiol; 2017 Apr; 117(4):1807-1820. PubMed ID: 27881718
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microsecond-scale timing precision in rodent trigeminal primary afferents.
    Bale MR; Campagner D; Erskine A; Petersen RS
    J Neurosci; 2015 Apr; 35(15):5935-40. PubMed ID: 25878266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonlinear encoding of tactile patterns in the barrel cortex.
    Webber RM; Stanley GB
    J Neurophysiol; 2004 May; 91(5):2010-22. PubMed ID: 14695349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex.
    Brecht M; Schneider M; Sakmann B; Margrie TW
    Nature; 2004 Feb; 427(6976):704-10. PubMed ID: 14973477
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Processing of periodic whisker deflections by neurons in the ventroposterior medial and thalamic reticular nuclei.
    Hartings JA; Temereanca S; Simons DJ
    J Neurophysiol; 2003 Nov; 90(5):3087-94. PubMed ID: 14615426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emergent properties of tactile scenes selectively activate barrel cortex neurons.
    Jacob V; Le Cam J; Ego-Stengel V; Shulz DE
    Neuron; 2008 Dec; 60(6):1112-25. PubMed ID: 19109915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting through deep or superficial nerves.
    Waite PM; Jacquin MF
    J Comp Neurol; 1992 Aug; 322(2):233-45. PubMed ID: 1522251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Topography of rodent whisking--I. Two-dimensional monitoring of whisker movements.
    Bermejo R; Vyas A; Zeigler HP
    Somatosens Mot Res; 2002; 19(4):341-6. PubMed ID: 12590835
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit.
    Minnery BS; Bruno RM; Simons DJ
    J Neurophysiol; 2003 Sep; 90(3):1556-70. PubMed ID: 12724362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modified sensory processing in the barrel cortex of the adult mouse after chronic whisker stimulation.
    Quairiaux C; Armstrong-James M; Welker E
    J Neurophysiol; 2007 Mar; 97(3):2130-47. PubMed ID: 17122325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents.
    Stüttgen MC; Rüter J; Schwarz C
    J Neurosci; 2006 Jul; 26(30):7933-41. PubMed ID: 16870738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response properties of whisker-associated primary afferent neurons following infraorbital nerve transection with microsurgical repair in adult rats.
    Xiao B; Zanoun RR; Carvell GE; Simons DJ; Washington KM
    J Neurophysiol; 2016 Mar; 115(3):1458-67. PubMed ID: 26792886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topography of whisking II: interaction of whisker and pad.
    Bermejo R; Friedman W; Zeigler HP
    Somatosens Mot Res; 2005 Sep; 22(3):213-20. PubMed ID: 16338829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Response properties of periodontal mechanosensitive neurons in the trigeminal ganglion of rabbit and neuronal activities during grinding-like jaw movement induced by cortical stimulation.
    Nagata K; Itoh S; Tsuboi A; Takafuji Y; Tabata T; Watanabe M
    Arch Oral Biol; 2008 Dec; 53(12):1138-48. PubMed ID: 18691698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity in primary somatosensory cortex resulting from environmentally enriched stimulation and sensory discrimination training.
    Guic E; Carrasco X; Rodríguez E; Robles I; Merzenich MM
    Biol Res; 2008; 41(4):425-37. PubMed ID: 19621123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.