BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 18685272)

  • 1. Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese.
    Cipollone R; Ascenzi P; Tomao P; Imperi F; Visca P
    J Mol Microbiol Biotechnol; 2008; 15(2-3):199-211. PubMed ID: 18685272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity.
    Cipollone R; Frangipani E; Tiburzi F; Imperi F; Ascenzi P; Visca P
    Appl Environ Microbiol; 2007 Jan; 73(2):390-8. PubMed ID: 17098912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanide detoxification by recombinant bacterial rhodanese.
    Cipollone R; Ascenzi P; Frangipani E; Visca P
    Chemosphere; 2006 May; 63(6):942-9. PubMed ID: 16307778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa.
    Cipollone R; Bigotti MG; Frangipani E; Ascenzi P; Visca P
    Biochem Biophys Res Commun; 2004 Dec; 325(1):85-90. PubMed ID: 15522204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaredoxin-like protein (GLP)-a novel bacteria sulfurtransferase that protects cells against cyanide and oxidative stresses.
    de Paula CP; Dos Santos MC; Tairum CA; Breyer CA; Toledo-Silva G; Toyama MH; Mori GM; de Oliveira MA
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5477-5492. PubMed ID: 32307572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification.
    Nagahara N; Ito T; Minami M
    Histol Histopathol; 1999 Oct; 14(4):1277-86. PubMed ID: 10506943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfides as cyanide antidotes: evidence for a new in vivo oxidative pathway for cyanide detoxification.
    Zottola MA; Beigel K; Soni SD; Lawrence R
    Chem Res Toxicol; 2009 Dec; 22(12):1948-53. PubMed ID: 19891443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation.
    Sharma M; Akhter Y; Chatterjee S
    World J Microbiol Biotechnol; 2019 Apr; 35(5):70. PubMed ID: 31011828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latest news about the sulfurtransferase protein family of higher plants.
    Papenbrock J; Guretzki S; Henne M
    Amino Acids; 2011 Jun; 41(1):43-57. PubMed ID: 20135153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The current and future applications of microorganism in the bioremediation of cyanide contamination.
    Baxter J; Cummings SP
    Antonie Van Leeuwenhoek; 2006 Jul; 90(1):1-17. PubMed ID: 16683094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histochemical localization of rhodanese activity in rat liver and skeletal muscle.
    Devlin DJ; Mills JW; Smith RP
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):247-55. PubMed ID: 2922757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern of enzyme changes in rabbits administered linamarin or potassium cyanide.
    Padmaja G; Panikkar KR
    Indian J Exp Biol; 1989 Jun; 27(6):551-5. PubMed ID: 2555300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of protein-free diet and food deprivation on hepatic rhodanese activity, serum proteins and acute cyanide lethality in mice.
    Rutkowski JV; Roebuck BD; Smith RP
    J Nutr; 1985 Jan; 115(1):132-7. PubMed ID: 3855311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do antidotes for acute cyanide poisoning act on mercaptopyruvate sulfurtransferase to facilitate detoxification?
    Nagahara N; Li Q; Sawada N
    Curr Drug Targets Immune Endocr Metabol Disord; 2003 Sep; 3(3):198-204. PubMed ID: 12871026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical localization of rhodanese.
    Sylvester M; Sander C
    Histochem J; 1990 Apr; 22(4):197-200. PubMed ID: 2387754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics.
    Libiad M; Sriraman A; Banerjee R
    J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain.
    Wróbel M; Jurkowska H; Sliwa L; Srebro Z
    Toxicol Mech Methods; 2004; 14(6):331-7. PubMed ID: 20021099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Isothiocyanate Biosynthesis by Rhodanese-Catalyzed Sulfur Transfer onto Isonitriles.
    Mlotek MD; Dose B; Hertweck C
    Chembiochem; 2024 Feb; 25(3):e202300732. PubMed ID: 37917130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of cyanide-metabolizing enzymes to environmental control; enzyme thermistor assay of cyanide using immobilized rhodanese and injectase.
    Mattiasson B; Mosbach K
    Biotechnol Bioeng; 1977 Nov; 19(11):1643-51. PubMed ID: 922128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.