These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 18685701)

  • 1. Clumps and streams in the local dark matter distribution.
    Diemand J; Kuhlen M; Madau P; Zemp M; Moore B; Potter D; Stadel J
    Nature; 2008 Aug; 454(7205):735-8. PubMed ID: 18685701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects for detecting supersymmetric dark matter in the Galactic halo.
    Springel V; White SD; Frenk CS; Navarro JF; Jenkins A; Vogelsberger M; Wang J; Ludlow A; Helmi A
    Nature; 2008 Nov; 456(7218):73-6. PubMed ID: 18987737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earth-mass dark-matter haloes as the first structures in the early Universe.
    Diemand J; Moore B; Stadel J
    Nature; 2005 Jan; 433(7024):389-91. PubMed ID: 15674284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring dark matter with Milky Way substructure.
    Kuhlen M; Madau P; Silk J
    Science; 2009 Aug; 325(5943):970-3. PubMed ID: 19608862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lost and found dark matter in elliptical galaxies.
    Dekel A; Stoehr F; Mamon GA; Cox TJ; Novak GS; Primack JR
    Nature; 2005 Sep; 437(7059):707-10. PubMed ID: 16193046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales.
    Wittman DM; Tyson JA; Kirkman D; Dell'Antonio I; Bernstein G
    Nature; 2000 May; 405(6783):143-8. PubMed ID: 10821262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal structure of dark matter haloes over a mass range of 20 orders of magnitude.
    Wang J; Bose S; Frenk CS; Gao L; Jenkins A; Springel V; White SDM
    Nature; 2020 Sep; 585(7823):39-42. PubMed ID: 32879500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold dark matter: Controversies on small scales.
    Weinberg DH; Bullock JS; Governato F; Kuzio de Naray R; Peter AH
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12249-55. PubMed ID: 25646464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.
    Vegetti S; Lagattuta DJ; McKean JP; Auger MW; Fassnacht CD; Koopmans LV
    Nature; 2012 Jan; 481(7381):341-3. PubMed ID: 22258612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.
    Schive HY; Liao MH; Woo TP; Wong SK; Chiueh T; Broadhurst T; Hwang WY
    Phys Rev Lett; 2014 Dec; 113(26):261302. PubMed ID: 25615301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Through a Smoother Lens: An expected absence of LCDM substructure detections from hydrodynamic and dark matter only simulations.
    Graus AS; Bullock JS; Boylan-Kolchin M; Nierenberg AM
    Mon Not R Astron Soc; 2018 Oct; 480(1):1322-1332. PubMed ID: 30573925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early gas stripping as the origin of the darkest galaxies in the Universe.
    Mayer L; Kazantzidis S; Mastropietro C; Wadsley J
    Nature; 2007 Feb; 445(7129):738-40. PubMed ID: 17301786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral signature of cosmological infall of gas around the first quasars.
    Barkana R; Loeb A
    Nature; 2003 Jan; 421(6921):341-3. PubMed ID: 12540893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.
    Inada N; Oguri M; Pindor B; Hennawi JF; Chiu K; Zheng W; Ichikawa S; Gregg MD; Becker RH; Suto Y; Strauss MA; Turner EL; Keeton CR; Annis J; Castander FJ; Eisenstein DJ; Frieman JA; Fukugita M; Gunn JE; Johnston DE; Kent SM; Nichol RC; Richards GT; Rix HW; Sheldon ES; Bahcall NA; Brinkmann J; Ivezić Z; Lamb DQ; McKay TA; Schneider DP; York DG
    Nature; 2003 Dec; 426(6968):810-2. PubMed ID: 14685230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The removal of cusps from galaxy centres by stellar feedback in the early Universe.
    Mashchenko S; Couchman HM; Wadsley J
    Nature; 2006 Aug; 442(7102):539-42. PubMed ID: 16885978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct detection of galactic halo dark matter.
    Oppenheimer BR; Hambly NC; Digby AP; Hodgkin ST; Saumon D
    Science; 2001 Apr; 292(5517):698-702. PubMed ID: 11264524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing the limits of detectability: mixed dark matter from strong gravitational lenses.
    Keeley RE; Nierenberg AM; Gilman D; Birrer S; Benson A; Treu T
    Mon Not R Astron Soc; 2023 Oct; 524(4):6159-6166. PubMed ID: 37559879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction.
    Rees MJ
    Philos Trans A Math Phys Eng Sci; 2003 Nov; 361(1812):2427-34. PubMed ID: 14667310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark matter maps reveal cosmic scaffolding.
    Massey R; Rhodes J; Ellis R; Scoville N; Leauthaud A; Finoguenov A; Capak P; Bacon D; Aussel H; Kneib JP; Koekemoer A; McCracken H; Mobasher B; Pires S; Refregier A; Sasaki S; Starck JL; Taniguchi Y; Taylor A; Taylor J
    Nature; 2007 Jan; 445(7125):286-90. PubMed ID: 17206154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tying dark matter to baryons with self-interactions.
    Kaplinghat M; Keeley RE; Linden T; Yu HB
    Phys Rev Lett; 2014 Jul; 113(2):021302. PubMed ID: 25062162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.