These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18685835)

  • 21. Factors shaping the corpus callosum.
    Stryker MP; Antonini A
    J Comp Neurol; 2001 May; 433(4):437-40. PubMed ID: 11304709
    [No Abstract]   [Full Text] [Related]  

  • 22. Roles of dynamic linkage of stable attractors across cortical networks in recalling long-term memory.
    Hoshino O; Zheng M; Kuroiwa K
    Biol Cybern; 2003 Mar; 88(3):163-76. PubMed ID: 12647224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1.
    Angelucci A; Levitt JB; Lund JS
    Prog Brain Res; 2002; 136():373-88. PubMed ID: 12143395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius).
    Innocenti GM; Manger PR; Masiello I; Colin I; Tettoni L
    Cereb Cortex; 2002 Apr; 12(4):411-22. PubMed ID: 11884356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zero-lag synchronous dynamics in triplets of interconnected cortical areas.
    Chawla D; Friston KJ; Lumer ED
    Neural Netw; 2001; 14(6-7):727-35. PubMed ID: 11665766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual interhemispheric communication and callosal connections of the occipital lobes.
    Berlucchi G
    Cortex; 2014 Jul; 56():1-13. PubMed ID: 23489777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deafferentation and axotomy of neurons in cat striate cortex: time course of changes in binocularity following corpus callosum transection.
    Payne BR; Pearson HE; Berman N
    Brain Res; 1984 Jul; 307(1-2):201-15. PubMed ID: 6087986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The callosal dilemma: explaining diaschisis in the context of hemispheric rivalry via a neural network model.
    Reggia JA; Goodall SM; Shkuro Y; Glezer M
    Neurol Res; 2001 Jul; 23(5):465-71. PubMed ID: 11474802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural synchrony and white matter variations in the human brain--relation between evoked γ frequency and corpus callosum morphology.
    Zaehle T; Herrmann CS
    Int J Psychophysiol; 2011 Jan; 79(1):49-54. PubMed ID: 20600369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets.
    Kiper DC; Knyazeva MG; Tettoni L; Innocenti GM
    J Neurophysiol; 1999 Dec; 82(6):3082-94. PubMed ID: 10601443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-tetanic modification of the efficiency of excitatory transmission in neural networks including interhemispheric connections.
    Bogdanova OG; Sil'kis IG
    Neurosci Behav Physiol; 2002; 32(1):15-24. PubMed ID: 11838551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections.
    Casanovas-Aguilar C; Miró-Bernié N; Pérez-Clausell J
    Neuroscience; 2002; 110(3):445-58. PubMed ID: 11906785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone.
    Olavarria JF
    J Comp Neurol; 2001 May; 433(4):441-57. PubMed ID: 11304710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anatomical and physiological aspects of visual functions of corpus callosum.
    Berlucchi G
    Brain Res; 1972 Feb; 37(2):371-92. PubMed ID: 4551394
    [No Abstract]   [Full Text] [Related]  

  • 36. Visual callosal connections: role in visual processing in health and disease.
    Bocci T; Pietrasanta M; Cerri C; Restani L; Caleo M; Sartucci F
    Rev Neurosci; 2014; 25(1):113-27. PubMed ID: 24127537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GABA-ergic interneurons involved in transcallosal inhibition of the visual cortices in vivo in mice.
    He XF; Lan Y; Zhang Q; Liang FY; Luo CM; Xu GQ; Pei Z
    Physiol Behav; 2015 Nov; 151():502-8. PubMed ID: 26318391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interhemispheric transfer of phosphenes generated by occipital versus parietal transcranial magnetic stimulation.
    Marzi CA; Mancini F; Savazzi S
    Exp Brain Res; 2009 Jan; 192(3):431-41. PubMed ID: 18663438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binocularity in the visual cortex of the adult cat does not depend on the integrity of the corpus callosum.
    Minciacchi D; Antonini A
    Behav Brain Res; 1984 Aug; 13(2):183-92. PubMed ID: 6487408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.