These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18686034)

  • 1. Mechanics of muscle injury induced by lengthening contraction.
    Gao Y; Wineman AS; Waas AM
    Ann Biomed Eng; 2008 Oct; 36(10):1615-23. PubMed ID: 18686034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrophil accumulation following passive stretches contributes to adaptations that reduce contraction-induced skeletal muscle injury in mice.
    Lockhart NC; Brooks SV
    J Appl Physiol (1985); 2008 Apr; 104(4):1109-15. PubMed ID: 18276901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice.
    Schertzer JD; Ryall JG; Lynch GS
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E499-505. PubMed ID: 16621899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle fascia and force transmission.
    Purslow PP
    J Bodyw Mov Ther; 2010 Oct; 14(4):411-7. PubMed ID: 20850050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak power of muscles injured by lengthening contractions.
    Widrick JJ; Barker T
    Muscle Nerve; 2006 Oct; 34(4):470-7. PubMed ID: 16810694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Neuromuscular responses of the triceps surae muscle to prolonged passive stretch of the foot extensor muscles under conditions of simulated microgravity].
    Koriak IuA
    Fiziol Zh (1994); 2010; 56(5):62-76. PubMed ID: 21265081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components.
    Fridén J; Lieber RL
    Acta Physiol Scand; 2001 Mar; 171(3):321-6. PubMed ID: 11412144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site and mechanics of failure in normal and dystrophin-deficient skeletal muscle.
    Law DJ; Caputo A; Tidball JG
    Muscle Nerve; 1995 Feb; 18(2):216-23. PubMed ID: 7823981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force transmission in skeletal muscle: from actomyosin to external tendons.
    Patel TJ; Lieber RL
    Exerc Sport Sci Rev; 1997; 25():321-63. PubMed ID: 9213097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Akt as a potential mediator of adaptations that reduce muscle injury.
    Lockhart NC; Baar K; Mazzeo RS; Brooks SV
    Med Sci Sports Exerc; 2006 Jun; 38(6):1058-64. PubMed ID: 16775545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strength at the extracellular matrix-muscle interface.
    Grounds MD; Sorokin L; White J
    Scand J Med Sci Sports; 2005 Dec; 15(6):381-91. PubMed ID: 16293150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle progenitor cell proliferation during passive stretch of unweighted soleus in dystrophin deficient mice.
    Turtikova OV; Altaeva EG; Tarakina MV; Malashenko AM; Nemirovskaya TL; Shenkman BS
    J Gravit Physiol; 2007 Jul; 14(1):P95-6. PubMed ID: 18372716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hamstring exercises for track and field athletes: injury and exercise biomechanics, and possible implications for exercise selection and primary prevention.
    Malliaropoulos N; Mendiguchia J; Pehlivanidis H; Papadopoulou S; Valle X; Malliaras P; Maffulli N
    Br J Sports Med; 2012 Sep; 46(12):846-51. PubMed ID: 22685125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The cellular effects of functional unloading and passive stretch on m. soleus of dystrophin-deficient mdx mice].
    Turtikova OV; Altaeva EG; Tarakina MV; Malashenko AM; Nemirovskaia TL; Shenkman BS
    Tsitologiia; 2008; 50(2):132-9. PubMed ID: 18540193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of active and passive stretching on muscle length.
    Riley DA; Van Dyke JM
    Phys Med Rehabil Clin N Am; 2012 Feb; 23(1):51-7, x. PubMed ID: 22239873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multisegmental cross-bridge kinetics model of the myofibril.
    Stoecker U; Telley IA; Stüssi E; Denoth J
    J Theor Biol; 2009 Aug; 259(4):714-26. PubMed ID: 19348814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of function in skeletal muscle following 2 different contraction-induced injuries.
    Lovering RM; Roche JA; Bloch RJ; De Deyne PG
    Arch Phys Med Rehabil; 2007 May; 88(5):617-25. PubMed ID: 17466731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions.
    Komulainen J; Takala TE; Kuipers H; Hesselink MK
    Pflugers Arch; 1998 Oct; 436(5):735-41. PubMed ID: 9716707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle modelling.
    Herzog W
    J Electromyogr Kinesiol; 1998 Apr; 8(2):59-60. PubMed ID: 9680946
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.