These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18686127)

  • 1. Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel.
    D'Souza GG; Cheng SM; Boddapati SV; Horobin RW; Weissig V
    J Drug Target; 2008 Aug; 16(7):578-85. PubMed ID: 18686127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-specific nanocarriers for improving the proapoptotic activity of small molecules.
    Weissig V
    Methods Enzymol; 2012; 508():131-55. PubMed ID: 22449924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization.
    Vaidya B; Vyas SP
    J Drug Target; 2012 May; 20(4):372-80. PubMed ID: 22339366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles.
    Xu Q; Liu Y; Su S; Li W; Chen C; Wu Y
    Biomaterials; 2012 Feb; 33(5):1627-39. PubMed ID: 22118775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol.
    Patel NR; Hatziantoniou S; Georgopoulos A; Demetzos C; Torchilin VP; Weissig V; D'Souza GG
    J Liposome Res; 2010 Sep; 20(3):244-9. PubMed ID: 19883213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery.
    Bilensoy E; Gürkaynak O; Doğan AL; Hincal AA
    Int J Pharm; 2008 Jan; 347(1-2):163-70. PubMed ID: 17689901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation.
    Danhier F; Lecouturier N; Vroman B; Jérôme C; Marchand-Brynaert J; Feron O; Préat V
    J Control Release; 2009 Jan; 133(1):11-7. PubMed ID: 18950666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor suppression via paclitaxel-loaded drug carriers that target inflammation marker upregulated in tumor vasculature and macrophages.
    Park S; Kang S; Chen X; Kim EJ; Kim J; Kim N; Kim J; Jin MM
    Biomaterials; 2013 Jan; 34(2):598-605. PubMed ID: 23099063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance.
    Patil Y; Sadhukha T; Ma L; Panyam J
    J Control Release; 2009 May; 136(1):21-9. PubMed ID: 19331851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer.
    van Vlerken LE; Duan Z; Seiden MV; Amiji MM
    Cancer Res; 2007 May; 67(10):4843-50. PubMed ID: 17510414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells.
    Yadav S; van Vlerken LE; Little SR; Amiji MM
    Cancer Chemother Pharmacol; 2009 Mar; 63(4):711-22. PubMed ID: 18618115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel.
    You J; Hu FQ; Du YZ; Yuan H
    Biomacromolecules; 2007 Aug; 8(8):2450-6. PubMed ID: 17661518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery.
    Mandal BB; Kundu SC
    Nanotechnology; 2009 Sep; 20(35):355101. PubMed ID: 19671963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier.
    Mooberry LK; Nair M; Paranjape S; McConathy WJ; Lacko AG
    J Drug Target; 2010 Jan; 18(1):53-8. PubMed ID: 19637935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery.
    Wang YC; Liu XQ; Sun TM; Xiong MH; Wang J
    J Control Release; 2008 May; 128(1):32-40. PubMed ID: 18395283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoformulation of paclitaxel to enhance cancer therapy.
    Gu Q; Xing JZ; Huang M; Zhang X; Chen J
    J Biomater Appl; 2013 Aug; 28(2):298-307. PubMed ID: 22561979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Solubilizing and sustained-releasing abilities and safety preliminary evaluation for paclitaxel based on N-octyl-O, N-carboxymethyl chitosan polymeric micelles].
    Huo MR; Zhang Y; Zhou JP; Lü L; Liu H; Liu FJ
    Yao Xue Xue Bao; 2008 Aug; 43(8):855-61. PubMed ID: 18956780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use.
    Weissig V
    Methods Mol Biol; 2015; 1265():1-11. PubMed ID: 25634263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel paclitaxel nanoparticles: development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation.
    Shavi GV; Kumar AR; Karthik A; Naseer M; Aravind G; Praful BD; Reddy MS; Udupa N
    J Control Release; 2010 Nov; 148(1):e119-21. PubMed ID: 21529590
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.