These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18686291)

  • 1. Hydrogen generation at ambient conditions: application in fuel cells.
    Boddien A; Loges B; Junge H; Beller M
    ChemSusChem; 2008; 1(8-9):751-8. PubMed ID: 18686291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells.
    Loges B; Boddien A; Junge H; Beller M
    Angew Chem Int Ed Engl; 2008; 47(21):3962-5. PubMed ID: 18457345
    [No Abstract]   [Full Text] [Related]  

  • 4. A ruthenium-based biomimetic hydrogen cluster for efficient photocatalytic hydrogen generation from formic acid.
    Chang CH; Chen MH; Du WS; Gliniak J; Lin JH; Wu HH; Chan HF; Yu JS; Wu TK
    Chemistry; 2015 Apr; 21(17):6617-22. PubMed ID: 25766997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3.
    Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L
    Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids.
    Li X; Ma X; Shi F; Deng Y
    ChemSusChem; 2010; 3(1):71-4. PubMed ID: 20033982
    [No Abstract]   [Full Text] [Related]  

  • 7. Towards a practical setup for hydrogen production from formic acid.
    Sponholz P; Mellmann D; Junge H; Beller M
    ChemSusChem; 2013 Jul; 6(7):1172-6. PubMed ID: 23757329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst.
    Tedsree K; Li T; Jones S; Chan CW; Yu KM; Bagot PA; Marquis EA; Smith GD; Tsang SC
    Nat Nanotechnol; 2011 May; 6(5):302-7. PubMed ID: 21478867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate.
    Czaun M; Goeppert A; May R; Haiges R; Prakash GK; Olah GA
    ChemSusChem; 2011 Sep; 4(9):1241-8. PubMed ID: 21404444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sp3 C-H bond activation with ruthenium(II) catalysts and C(3)-alkylation of cyclic amines.
    Sundararaju B; Achard M; Sharma GV; Bruneau C
    J Am Chem Soc; 2011 Jul; 133(27):10340-3. PubMed ID: 21671630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.
    Pan Y; Pan CL; Zhang Y; Li H; Min S; Guo X; Zheng B; Chen H; Anders A; Lai Z; Zheng J; Huang KW
    Chem Asian J; 2016 May; 11(9):1357-60. PubMed ID: 27101381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst.
    Fellay C; Dyson PJ; Laurenczy G
    Angew Chem Int Ed Engl; 2008; 47(21):3966-8. PubMed ID: 18393267
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.
    Wang Y; Agarwal S; Kloekhorst A; Heeres HJ
    ChemSusChem; 2016 May; 9(9):951-61. PubMed ID: 26836970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.
    Sponholz P; Mellmann D; Cordes C; Alsabeh PG; Li B; Li Y; Nielsen M; Junge H; Dixneuf P; Beller M
    ChemSusChem; 2014 Sep; 7(9):2419-22. PubMed ID: 25088665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A continuous-flow method for the generation of hydrogen from formic acid.
    Majewski A; Morris DJ; Kendall K; Wills M
    ChemSusChem; 2010 Apr; 3(4):431-4. PubMed ID: 20301180
    [No Abstract]   [Full Text] [Related]  

  • 18. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature.
    Zhou X; Huang Y; Liu C; Liao J; Lu T; Xing W
    ChemSusChem; 2010 Dec; 3(12):1379-82. PubMed ID: 21064176
    [No Abstract]   [Full Text] [Related]  

  • 20. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid.
    Nakahara Y; Toda T; Matsunami A; Kayaki Y; Kuwata S
    Chem Asian J; 2018 Jan; 13(1):73-80. PubMed ID: 29140603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.