These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18686925)

  • 1. Comparison of nitrification rates in conventional and membrane-assisted biological nutrient removal processes.
    Monti A; Hall ER
    Water Environ Res; 2008 Jun; 80(6):497-506. PubMed ID: 18686925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation.
    Hall ER; Monti A; Mohn WW
    Water Res; 2010 May; 44(9):2703-14. PubMed ID: 20189214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of biological nutrient removal (BNR) processes with sedimentation and membrane-based separation.
    Monti A; Hall ER; Dawson RN; Husain H; Kelly HG
    Biotechnol Bioeng; 2006 Jul; 94(4):740-52. PubMed ID: 16477659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes.
    Geng Z; Hall ER
    Water Res; 2007 Nov; 41(19):4329-38. PubMed ID: 17697695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of IFAS wastewater treatment processes for biological phosphorus removal.
    Sriwiriyarat T; Randall CW
    Water Res; 2005 Oct; 39(16):3873-84. PubMed ID: 16126245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a high-rate enhanced biological phosphorus removal process in a membrane-assisted bioreactor.
    Monti A; Hall ER; Koch FA; Dawson RN; Husain H; Kelly HG
    Water Environ Res; 2007 Jun; 79(6):675-86. PubMed ID: 17605336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.
    Tam HL; Tang DT; Leung WY; Ho KM; Greenfield PF
    Water Sci Technol; 2004; 50(10):59-65. PubMed ID: 15656296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system.
    Yuan Q; Oleszkiewicz JA
    Water Sci Technol; 2011; 63(12):2802-7. PubMed ID: 22049702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Nitrogen removal by enhanced endogenous denitrification with excess activated sludge reduction technology].
    Wang JL; Peng YZ; Gao YQ; Wang SY; Gao CD
    Huan Jing Ke Xue; 2008 Jan; 29(1):134-8. PubMed ID: 18441930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of inorganic material in anoxic/aerobic-activated sludge system mixed liquor.
    Wentzel MC; Ubisi MF; Lakay MT; Ekama GA
    Water Res; 2002 Dec; 36(20):5074-82. PubMed ID: 12448556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Short-cut/Complete nitrification and denitrification in a pilot-scale plant treating actual domestic wastewater].
    Ma Y; Chen LQ; Peng YZ; Wu XL
    Huan Jing Ke Xue; 2006 Dec; 27(12):2477-82. PubMed ID: 17304844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting nitrification by membrane-attached biofilm.
    Wu CY; Ushiwaka S; Horii H; Yamagiwa K
    Water Sci Technol; 2006; 54(9):121-8. PubMed ID: 17163050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of biological removal via nitrite with real-time control using aerobic granular sludge and flocculent activated sludge.
    Gao D; Yuan X; Liang H; Wu WM
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1645-52. PubMed ID: 20972676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite.
    Ji Z; Chen Y
    Environ Sci Technol; 2010 Dec; 44(23):8957-63. PubMed ID: 21053972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants.
    Wanner O; Panagiotidis V; Clavadetscher P; Siegrist H
    Water Res; 2005 Nov; 39(19):4725-34. PubMed ID: 16278004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of aerobic granular sludge under tropical climate conditions: The key role of inoculum adaptation under reduced sludge washout for stable granulation.
    Bassin JP; Tavares DC; Borges RC; Dezotti M
    J Environ Manage; 2019 Jan; 230():168-182. PubMed ID: 30292012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrification of ammonia nitrogen high concentration in membrane assisted bioreactor.
    Zabczyński S; Surmacz-Górska J; Miksch K
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):93-100. PubMed ID: 15296142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.