BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18686944)

  • 21. Characterization of activity landscapes using 2D and 3D similarity methods: consensus activity cliffs.
    Medina-Franco JL; Martínez-Mayorga K; Bender A; Marín RM; Giulianotti MA; Pinilla C; Houghten RA
    J Chem Inf Model; 2009 Feb; 49(2):477-91. PubMed ID: 19434846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2D-3D migration of large chemical inventories with conformational multiplication. Application of the genetic algorithm.
    Mekenyan O; Pavlov T; Grancharov V; Todorov M; Schmieder P; Veith G
    J Chem Inf Model; 2005; 45(2):283-92. PubMed ID: 15807489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-MEDNEs: an alternative "in silico" technique for chemical research in toxicology. 2. quantitative proteome-toxicity relationships (QPTR) based on mass spectrum spiral entropy.
    Cruz-Monteagudo M; González-Díaz H; Borges F; Dominguez ER; Cordeiro MN
    Chem Res Toxicol; 2008 Mar; 21(3):619-32. PubMed ID: 18257557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines.
    Nayyar A; Patel SR; Shaikh M; Coutinho E; Jain R
    Eur J Med Chem; 2009 May; 44(5):2017-29. PubMed ID: 19022537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals.
    González-Díaz H; Prado-Prado FJ
    J Comput Chem; 2008 Mar; 29(4):656-67. PubMed ID: 17999385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses.
    Beck JM; Springer C
    J Chem Inf Model; 2014 Apr; 54(4):1226-34. PubMed ID: 24605924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antioxidant QSAR modeling as exemplified on polyphenols.
    Lucić B; Amić D; Trinajstić N
    Methods Mol Biol; 2008; 477():207-18. PubMed ID: 19082949
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure-activity relationships for a series of inhibitors of cruzain from Trypanosoma cruzi: molecular modeling, CoMFA and CoMSIA studies.
    Trossini GH; Guido RV; Oliva G; Ferreira EI; Andricopulo AD
    J Mol Graph Model; 2009 Aug; 28(1):3-11. PubMed ID: 19376735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A structure-information approach to the prediction of biological activities and properties.
    Hall LH
    Chem Biodivers; 2004 Jan; 1(1):183-201. PubMed ID: 17191786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus.
    Patra JC; Singh O
    J Comput Chem; 2009 Nov; 30(15):2494-508. PubMed ID: 19373836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of MOLMAP approach for QSAR modeling of various biological activities using substituent electronic descriptors.
    Hemmateenejad B; Mehdipour AR; Miri R; Shamsipur M
    J Comput Chem; 2009 Oct; 30(13):2001-9. PubMed ID: 19130500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors.
    Tuccinardi T; Ortore G; Santos MA; Marques SM; Nuti E; Rossello A; Martinelli A
    J Chem Inf Model; 2009 Jul; 49(7):1715-24. PubMed ID: 19522467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short linear cationic antimicrobial peptides: screening, optimizing, and prediction.
    Hilpert K; Fjell CD; Cherkasov A
    Methods Mol Biol; 2008; 494():127-59. PubMed ID: 18726572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global, local and novel consensus quantitative structure-activity relationship studies of 4-(Phenylaminomethylene) isoquinoline-1, 3 (2H, 4H)-diones as potent inhibitors of the cyclin-dependent kinase 4.
    Lei B; Xi L; Li J; Liu H; Yao X
    Anal Chim Acta; 2009 Jun; 644(1-2):17-24. PubMed ID: 19463556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors.
    Cormanich RA; Goodarzi M; Freitas MP
    Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comments on the definition of the Q2 parameter for QSAR validation.
    Consonni V; Ballabio D; Todeschini R
    J Chem Inf Model; 2009 Jul; 49(7):1669-78. PubMed ID: 19527034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alignment-free prediction of a drug-target complex network based on parameters of drug connectivity and protein sequence of receptors.
    Viña D; Uriarte E; Orallo F; González-Díaz H
    Mol Pharm; 2009; 6(3):825-35. PubMed ID: 19281186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. QSAR models for predicting enzymatic hydrolysis of new chemical entities in 'soft-drug' design.
    Massarelli I; Macchia M; Minutolo F; Prota G; Bianucci AM
    Bioorg Med Chem; 2009 May; 17(10):3543-56. PubMed ID: 19398207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.