These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 18686956)

  • 1. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.
    Li L; Reiss P
    J Am Chem Soc; 2008 Sep; 130(35):11588-9. PubMed ID: 18686956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection.
    Zhu CQ; Wang P; Wang X; Li Y
    Nanoscale Res Lett; 2008 Jun; 3(6):213-20. PubMed ID: 21777485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(20):e2306097. PubMed ID: 38514908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Retina-Inspired Optoelectronic Synapse Using Quantum Dots for Neuromorphic Photostimulation of Neurons.
    Balamur R; Eren GO; Kaleli HN; Karatum O; Kaya L; Hasanreisoglu M; Nizamoglu S
    Adv Sci (Weinh); 2024 May; 11(18):e2401753. PubMed ID: 38447181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing Two Distinct Formation Pathways of 2D Wurtzite-CdSe Nanocrystals Using In Situ X-Ray Scattering.
    Lee HC; Bootharaju MS; Lee K; Chang H; Kim SY; Ahn E; Li S; Kim BH; Ahn H; Hyeon T; Yang J
    Adv Sci (Weinh); 2024 Feb; 11(6):e2307600. PubMed ID: 38072639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue-emitting InP quantum dots participate in an efficient resonance energy transfer process in water.
    Roy P; Virmani M; Pillai PP
    Chem Sci; 2023 May; 14(19):5167-5176. PubMed ID: 37206393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection.
    Zhang T; Liu P; Zhao F; Tan Y; Sun J; Xiao X; Wang Z; Wang Q; Zheng F; Sun XW; Wu D; Xing G; Wang K
    Nanoscale Adv; 2023 Jan; 5(2):385-392. PubMed ID: 36756252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity.
    Choi Y; Hahm D; Bae WK; Lim J
    Nat Commun; 2023 Jan; 14(1):43. PubMed ID: 36596807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly qualified InP based QDs through a temperature controlled ZnSe shell coating process and their DFT calculations.
    Seo H; Park JH; Kwon OH; Kwon OP; Kwak SK; Kim SW
    Nanoscale Adv; 2020 Dec; 2(12):5615-5622. PubMed ID: 36133859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances and Challenges in Heavy-Metal-Free InP Quantum Dot Light-Emitting Diodes.
    Jiang X; Fan Z; Luo L; Wang L
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes.
    Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X
    Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the Dermal Toxicity of InZnP Quantum Dots Before and After Accelerated Weathering: Toward a Safer-By-Design Strategy.
    Dussert F; Wegner KD; Moriscot C; Gallet B; Jouneau PH; Reiss P; Carriere M
    Front Toxicol; 2021; 3():636976. PubMed ID: 35295141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. III-V colloidal nanocrystals: control of covalent surfaces.
    Kim Y; Chang JH; Choi H; Kim YH; Bae WK; Jeong S
    Chem Sci; 2019 Nov; 11(4):913-922. PubMed ID: 34084346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis and optical, structural, and surface characterization of InP-In
    Granada-Ramirez DA; Arias-Cerón JS; Pérez-González M; Luna-Arias JP; Cruz-Orea A; Rodríguez-Fragoso P; Herrera-Pérez JL; Gómez-Herrera ML; Tomás SA; Vázquez-Hernández F; Durán-Ledezma AA; Mendoza-Alvarez JG
    Appl Surf Sci; 2020 Nov; 530():147294. PubMed ID: 32834267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DBU-Catalyzed One-Pot Synthesis of Nearly Any Metal Salt of Fatty Acid (M-FA): A Library of Metal Precursors to Semiconductor Nanocrystal Synthesis.
    Basel S; Bhardwaj K; Pradhan S; Pariyar A; Tamang S
    ACS Omega; 2020 Mar; 5(12):6666-6675. PubMed ID: 32258902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green Photoluminescence of Perovskite CsPb(Br
    Miyata S; Iso Y; Isobe T
    ACS Omega; 2019 Sep; 4(12):15067-15073. PubMed ID: 31552349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity.
    Wegner KD; Dussert F; Truffier-Boutry D; Benayad A; Beal D; Mattera L; Ling WL; Carrière M; Reiss P
    Front Chem; 2019; 7():466. PubMed ID: 31316974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals.
    Li H; Jia C; Meng X; Li H
    Front Chem; 2018; 6():652. PubMed ID: 30671431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Degradation of Cadmium-Free InP and InPZn/ZnS Quantum Dots in Solution.
    Brown RP; Gallagher MJ; Fairbrother DH; Rosenzweig Z
    Langmuir; 2018 Nov; 34(46):13924-13934. PubMed ID: 30351964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.