These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18687069)

  • 1. Cell-free protein expression of membrane proteins using nanolipoprotein particles.
    Katzen F
    Biotechniques; 2008 Aug; 45(2):190. PubMed ID: 18687069
    [No Abstract]   [Full Text] [Related]  

  • 2. Cell-free expression for nanolipoprotein particles: building a high-throughput membrane protein solubility platform.
    Cappuccio JA; Hinz AK; Kuhn EA; Fletcher JE; Arroyo ES; Henderson PT; Blanchette CD; Walsworth VL; Corzett MH; Law RJ; Pesavento JB; Segelke BW; Sulchek TA; Chromy BA; Katzen F; Peterson T; Bench G; Kudlicki W; Hoeprich PD; Coleman MA
    Methods Mol Biol; 2009; 498():273-96. PubMed ID: 18988032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach.
    Katzen F; Fletcher JE; Yang JP; Kang D; Peterson TC; Cappuccio JA; Blanchette CD; Sulchek T; Chromy BA; Hoeprich PD; Coleman MA; Kudlicki W
    J Proteome Res; 2008 Aug; 7(8):3535-42. PubMed ID: 18557639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid and Protein Transfer between Nanolipoprotein Particles and Supported Lipid Bilayers.
    Dang AT; He W; Ivey DB; Coleman MA; Kuhl TL
    Langmuir; 2019 Sep; 35(37):12071-12078. PubMed ID: 31442053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer.
    Knowles TJ; Finka R; Smith C; Lin YP; Dafforn T; Overduin M
    J Am Chem Soc; 2009 Jun; 131(22):7484-5. PubMed ID: 19449872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integral membrane protein fragment recombination after transfer from nanolipoprotein particles to bicelles.
    Lai G; Renthal R
    Biochemistry; 2013 Dec; 52(52):9405-12. PubMed ID: 24328096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles.
    Cleveland TE; He W; Evans AC; Fischer NO; Lau EY; Coleman MA; Butler P
    Protein Sci; 2018 Mar; 27(3):780-789. PubMed ID: 29266475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmicellar systems for solution NMR spectroscopy of membrane proteins.
    Raschle T; Hiller S; Etzkorn M; Wagner G
    Curr Opin Struct Biol; 2010 Aug; 20(4):471-9. PubMed ID: 20570504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective on the Martini model.
    Marrink SJ; Tieleman DP
    Chem Soc Rev; 2013 Aug; 42(16):6801-22. PubMed ID: 23708257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing ras effector interactions on nanoparticle supported lipid bilayers.
    Filchtinski D; Bee C; Savopol T; Engelhard M; Becker CF; Herrmann C
    Bioconjug Chem; 2008 Sep; 19(9):1938-44. PubMed ID: 18712896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different apolipoproteins impact nanolipoprotein particle formation.
    Chromy BA; Arroyo E; Blanchette CD; Bench G; Benner H; Cappuccio JA; Coleman MA; Henderson PT; Hinz AK; Kuhn EA; Pesavento JB; Segelke BW; Sulchek TA; Tarasow T; Walsworth VL; Hoeprich PD
    J Am Chem Soc; 2007 Nov; 129(46):14348-54. PubMed ID: 17963384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nanodisc: a novel tool for membrane protein studies.
    Borch J; Hamann T
    Biol Chem; 2009 Aug; 390(8):805-14. PubMed ID: 19453280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles.
    Baker SE; Hopkins RC; Blanchette CD; Walsworth VL; Sumbad R; Fischer NO; Kuhn EA; Coleman M; Chromy BA; Létant SE; Hoeprich PD; Adams MW; Henderson PT
    J Am Chem Soc; 2009 Jun; 131(22):7508-9. PubMed ID: 19449869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of surface-supported bilayers in studies of transmembrane helix dimerization.
    Li E; Merzlyakov M; Lin J; Searson P; Hristova K
    J Struct Biol; 2009 Oct; 168(1):53-60. PubMed ID: 19303932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents.
    Prakash A; Zhu H; Jones CJ; Benoit DN; Ellsworth AZ; Bryant EL; Colvin VL
    ACS Nano; 2009 Aug; 3(8):2139-46. PubMed ID: 19594166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-free protein expression of membrane proteins using nanolipoprotein particles.
    Katzen F; Fletcher JE; Yang JP; Vasu S; Peterson T; Kudlicki W
    Biotechniques; 2008 Oct; 45(4):469. PubMed ID: 18949886
    [No Abstract]   [Full Text] [Related]  

  • 17. Concerning tryptophan and protein-bilayer interactions.
    Koeppe RE
    J Gen Physiol; 2007 Aug; 130(2):223-4. PubMed ID: 17635961
    [No Abstract]   [Full Text] [Related]  

  • 18. CGDB: a database of membrane protein/lipid interactions by coarse-grained molecular dynamics simulations.
    Chetwynd AP; Scott KA; Mokrab Y; Sansom MS
    Mol Membr Biol; 2008 Dec; 25(8):662-9. PubMed ID: 18937097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the efficacy of innate immune agonists: could nanolipoprotein particles hold the key?
    Fischer NO; Blanchette C; Rasley A
    Nanomedicine (Lond); 2014 Mar; 9(3):369-72. PubMed ID: 24746187
    [No Abstract]   [Full Text] [Related]  

  • 20. Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers.
    Zeno WF; Johnson TJ; Sasaki DY; Risbud SH; Longo ML
    J Phys Chem B; 2016 Nov; 120(43):11180-11190. PubMed ID: 27723342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.