These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18687356)

  • 1. 1H NMR relaxation studies of protein-polysaccharide mixtures.
    Ducel V; Pouliquen D; Richard J; Boury F
    Int J Biol Macromol; 2008 Nov; 43(4):359-66. PubMed ID: 18687356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum arabic complexes.
    Liu S; Low NH; Nickerson MT
    J Agric Food Chem; 2009 Feb; 57(4):1521-6. PubMed ID: 19170635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular interactions during complex coacervation of pea protein isolate and gum arabic.
    Liu S; Cao YL; Ghosh S; Rousseau D; Low NH; Nickerson MT
    J Agric Food Chem; 2010 Jan; 58(1):552-6. PubMed ID: 19938857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational modifications of alpha gliadin and globulin proteins upon complex coacervates formation with gum Arabic as studied by Raman microspectroscopy.
    Chourpa I; Ducel V; Richard J; Dubois P; Boury F
    Biomacromolecules; 2006 Sep; 7(9):2616-23. PubMed ID: 16961325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant protein-polysaccharide interactions in solutions: application of soft particle analysis and light scattering measurements.
    Ducel V; Saulnier P; Richard J; Boury F
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):95-102. PubMed ID: 15737533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological interfacial properties of plant protein-arabic gum coacervates at the oil-water interface.
    Ducel V; Richard J; Popineau Y; Boury F
    Biomacromolecules; 2005; 6(2):790-6. PubMed ID: 15762643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Arabic gum aqueous solutions as revealed by NMR relaxometry.
    Florek-Wojciechowska M
    J Sci Food Agric; 2022 Oct; 102(13):5808-5813. PubMed ID: 35420169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure, rheological and water mobility behaviour of plant-based protein isolates (pea and quinoa) and locust bean gum mixtures.
    Agarwal D; Kim EH; Feng L; Wade C; Moggré GJ; Morgenstern MP; Hedderley DI
    Food Res Int; 2023 Feb; 164():112311. PubMed ID: 36737905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.
    Nguyen TD; Lafarge C; Murat C; Mession JL; Cayot N; Saurel R
    Food Chem; 2014 Dec; 164():406-12. PubMed ID: 24996351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of pea vicilin. 1. Denoting convicilin as the alpha-subunit of the Pisum vicilin family.
    O'Kane FE; Happe RP; Vereijken JM; Gruppen H; van Boekel MA
    J Agric Food Chem; 2004 May; 52(10):3141-8. PubMed ID: 15137866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotational and translational mobility of small molecules in sucrose plus polysaccharide solutions.
    Contreras-Lopez E; Champion D; Hervet H; Blond G; Le Meste M
    J Agric Food Chem; 2000 Apr; 48(4):1009-15. PubMed ID: 10775342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.
    Wong D; Vasanthan T; Ozimek L
    Food Chem; 2013 Dec; 141(4):3913-9. PubMed ID: 23993565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PA1b, an insecticidal protein extracted from pea seeds (Pisum sativum): 1H-2-D NMR study and molecular modeling.
    Jouvensal L; Quillien L; Ferrasson E; Rahbé Y; Guéguen J; Vovelle F
    Biochemistry; 2003 Oct; 42(41):11915-23. PubMed ID: 14556622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration.
    Niu F; Su Y; Liu Y; Wang G; Zhang Y; Yang Y
    Colloids Surf B Biointerfaces; 2014 Jan; 113():477-82. PubMed ID: 24149009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusivity of whey protein and gum arabic in their coacervates.
    Weinbreck F; Rollema HS; Tromp RH; de Kruif CG
    Langmuir; 2004 Jul; 20(15):6389-95. PubMed ID: 15248727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.
    Li Y; Zhang X; Zhao Y; Ding J; Lin S
    Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex coacervate formation between hemp protein isolate and gum Arabic: Formulation and characterization.
    Plati F; Ritzoulis C; Pavlidou E; Paraskevopoulou A
    Int J Biol Macromol; 2021 Jul; 182():144-153. PubMed ID: 33836200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of a Synergistic Effect between Pea Seed and Wheat Grain Endogenous Phytase Activities.
    Chouchene A; Micard V; Lullien-Pellerin V
    J Agric Food Chem; 2018 Nov; 66(45):12034-12041. PubMed ID: 30375224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of frozen storage on the foaming properties of wheat gliadin.
    Wang P; Tao H; Wu F; Yang N; Chen F; Jin Z; Xu X
    Food Chem; 2014 Dec; 164():44-9. PubMed ID: 24996303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.