These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
656 related articles for article (PubMed ID: 18687521)
21. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate. Liu T; Rao P; Mak MS; Wang P; Lo IM Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187 [TBL] [Abstract][Full Text] [Related]
22. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. Arroyo MG; Pérez-Herranz V; Montañés MT; García-Antón J; Guiñón JL J Hazard Mater; 2009 Sep; 169(1-3):1127-33. PubMed ID: 19464794 [TBL] [Abstract][Full Text] [Related]
23. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Shi LN; Zhang X; Chen ZL Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833 [TBL] [Abstract][Full Text] [Related]
24. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. VanEngelen MR; Peyton BM; Mormile MR; Pinkart HC Biodegradation; 2008 Nov; 19(6):841-50. PubMed ID: 18401687 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis. Liu Y J Hazard Mater; 2009 Sep; 168(2-3):992-6. PubMed ID: 19327885 [TBL] [Abstract][Full Text] [Related]
26. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles. Hu CY; Lo SL; Liou YH; Hsu YW; Shih K; Lin CJ Water Res; 2010 May; 44(10):3101-8. PubMed ID: 20350740 [TBL] [Abstract][Full Text] [Related]
27. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Mak MS; Lo IM Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997 [TBL] [Abstract][Full Text] [Related]
28. Use of waste iron metal for removal of Cr(VI) from water. Lee T; Lim H; Lee Y; Park JW Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531 [TBL] [Abstract][Full Text] [Related]
29. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. Gheju M; Balcu I J Hazard Mater; 2010 Oct; 182(1-3):484-93. PubMed ID: 20638785 [TBL] [Abstract][Full Text] [Related]
30. Controlled reduction of red mud waste to produce active systems for environmental applications: heterogeneous Fenton reaction and reduction of Cr(VI). Costa RC; Moura FC; Oliveira PE; Magalhães F; Ardisson JD; Lago RM Chemosphere; 2010 Feb; 78(9):1116-20. PubMed ID: 20060564 [TBL] [Abstract][Full Text] [Related]
31. Solution structures of chromium(VI) complexes with glutathione and model thiols. Levina A; Lay PA Inorg Chem; 2004 Jan; 43(1):324-35. PubMed ID: 14704084 [TBL] [Abstract][Full Text] [Related]
32. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Hsieh WP; Pan JR; Huang C; Su YC; Juang YJ Sci Total Environ; 2010 Jan; 408(3):672-9. PubMed ID: 19896167 [TBL] [Abstract][Full Text] [Related]
33. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite. Jiang D; Li Y; Wu Y; Zhou P; Lan Y; Zhou L Chemosphere; 2012 Oct; 89(7):832-7. PubMed ID: 22652441 [TBL] [Abstract][Full Text] [Related]
34. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Hu J; Chen C; Zhu X; Wang X J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001 [TBL] [Abstract][Full Text] [Related]
35. Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Dos Santos Coelho F; Ardisson JD; Moura FC; Lago RM; Murad E; Fabris JD Chemosphere; 2008 Mar; 71(1):90-6. PubMed ID: 18061239 [TBL] [Abstract][Full Text] [Related]
37. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. Kantar C; Cetin Z; Demiray H J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738 [TBL] [Abstract][Full Text] [Related]
38. Cr(VI) reduction in aqueous solutions by using synthetic iron sulphide. Erdem M; Altundogan HS; Ozer A; Tümen F Environ Technol; 2001 Oct; 22(10):1213-22. PubMed ID: 11766043 [TBL] [Abstract][Full Text] [Related]
39. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor. Lugo-Lugo V; Barrera-Díaz C; Bilyeu B; Balderas-Hernández P; Ureña-Nuñez F; Sánchez-Mendieta V J Hazard Mater; 2010 Apr; 176(1-3):418-25. PubMed ID: 20031318 [TBL] [Abstract][Full Text] [Related]
40. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II). Mukhopadhyay B; Sundquist J; Schmitz RJ J Environ Manage; 2007 Jan; 82(1):66-76. PubMed ID: 16545518 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]