BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 18687924)

  • 1. Helical structures of ESCRT-III are disassembled by VPS4.
    Lata S; Schoehn G; Jain A; Pires R; Piehler J; Gottlinger HG; Weissenhorn W
    Science; 2008 Sep; 321(5894):1354-7. PubMed ID: 18687924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding.
    Kieffer C; Skalicky JJ; Morita E; De Domenico I; Ward DM; Kaplan J; Sundquist WI
    Dev Cell; 2008 Jul; 15(1):62-73. PubMed ID: 18606141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for ESCRT-III protein autoinhibition.
    Bajorek M; Schubert HL; McCullough J; Langelier C; Eckert DM; Stubblefield WM; Uter NT; Myszka DG; Hill CP; Sundquist WI
    Nat Struct Mol Biol; 2009 Jul; 16(7):754-62. PubMed ID: 19525971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural role of the Vps4-Vta1 interface in ESCRT-III recycling.
    Yang D; Hurley JH
    Structure; 2010 Aug; 18(8):976-84. PubMed ID: 20696398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin depletion and dominant-negative VPS4 inhibit rhabdovirus budding without affecting alphavirus budding.
    Taylor GM; Hanson PI; Kielian M
    J Virol; 2007 Dec; 81(24):13631-9. PubMed ID: 17913808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1.
    Cada AK; Pavlin MR; Castillo JP; Tong AB; Larsen KP; Ren X; Yokom AL; Tsai FC; Shiah JV; Bassereau PM; Bustamante CJ; Hurley JH
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2204536119. PubMed ID: 35858336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation.
    Bertin A; de Franceschi N; de la Mora E; Maity S; Alqabandi M; Miguet N; di Cicco A; Roos WH; Mangenot S; Weissenhorn W; Bassereau P
    Nat Commun; 2020 May; 11(1):2663. PubMed ID: 32471988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A.
    Scott A; Gaspar J; Stuchell-Brereton MD; Alam SL; Skalicky JJ; Sundquist WI
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13813-8. PubMed ID: 16174732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization.
    Alqabandi M; de Franceschi N; Maity S; Miguet N; Bally M; Roos WH; Weissenhorn W; Bassereau P; Mangenot S
    BMC Biol; 2021 Apr; 19(1):66. PubMed ID: 33832485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the function of ESCRT and its role in enveloped virus infection.
    Wang C; Chen Y; Hu S; Liu X
    Front Microbiol; 2023; 14():1261651. PubMed ID: 37869652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Inducible ESCRT-III Inhibition Tool to Control HIV-1 Budding.
    Wang H; Gallet B; Moriscot C; Pezet M; Chatellard C; Kleman JP; Göttlinger H; Weissenhorn W; Boscheron C
    Viruses; 2023 Nov; 15(12):. PubMed ID: 38140530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly.
    Caillat C; Macheboeuf P; Wu Y; McCarthy AA; Boeri-Erba E; Effantin G; Göttlinger HG; Weissenhorn W; Renesto P
    Nat Commun; 2015 Dec; 6():8781. PubMed ID: 26632262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and membrane remodeling activity of ESCRT-III helical polymers.
    McCullough J; Clippinger AK; Talledge N; Skowyra ML; Saunders MG; Naismith TV; Colf LA; Afonine P; Arthur C; Sundquist WI; Hanson PI; Frost A
    Science; 2015 Dec; 350(6267):1548-51. PubMed ID: 26634441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for the ESCRT system in cell division in archaea.
    Samson RY; Obita T; Freund SM; Williams RL; Bell SD
    Science; 2008 Dec; 322(5908):1710-3. PubMed ID: 19008417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inducible ESCRT-III inhibition tool to control HIV-1 budding.
    Wang H; Gallet B; Moriscot C; Pezet M; Chatellard C; Kleman JP; Göttlinger H; Weissenhorn W; Boscheron C
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational model of membrane fission catalyzed by ESCRT-III.
    Fabrikant G; Lata S; Riches JD; Briggs JA; Weissenhorn W; Kozlov MM
    PLoS Comput Biol; 2009 Nov; 5(11):e1000575. PubMed ID: 19936052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane budding.
    Hurley JH; Boura E; Carlson LA; Różycki B
    Cell; 2010 Dec; 143(6):875-87. PubMed ID: 21145455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments.
    Jiang X; Harker-Kirschneck L; Vanhille-Campos C; Pfitzner AK; Lominadze E; Roux A; Baum B; Šarić A
    PLoS Comput Biol; 2022 Oct; 18(10):e1010586. PubMed ID: 36251703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB.
    Moriscot C; Gribaldo S; Jault JM; Krupovic M; Arnaud J; Jamin M; Schoehn G; Forterre P; Weissenhorn W; Renesto P
    PLoS One; 2011; 6(7):e21921. PubMed ID: 21760923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic ESCRT-III architecture governs helical membrane tube formation.
    Moser von Filseck J; Barberi L; Talledge N; Johnson IE; Frost A; Lenz M; Roux A
    Nat Commun; 2020 May; 11(1):1516. PubMed ID: 32471995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.