These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 18688012)

  • 1. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study.
    Boussel L; Rayz V; McCulloch C; Martin A; Acevedo-Bolton G; Lawton M; Higashida R; Smith WS; Young WL; Saloner D
    Stroke; 2008 Nov; 39(11):2997-3002. PubMed ID: 18688012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic Differences Between Recurrent and Nonrecurrent Intracranial Aneurysms: Fluid Dynamics Simulations Based on MR Angiography.
    Schönfeld MH; Forkert ND; Fiehler J; Cho YD; Han MH; Kang HS; Peach TW; Byrne JV
    J Neuroimaging; 2019 Jul; 29(4):447-453. PubMed ID: 30891876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points.
    Fukazawa K; Ishida F; Umeda Y; Miura Y; Shimosaka S; Matsushima S; Taki W; Suzuki H
    World Neurosurg; 2015 Jan; 83(1):80-6. PubMed ID: 23403347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients.
    Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W
    BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms.
    Goubergrits L; Schaller J; Kertzscher U; van den Bruck N; Poethkow K; Petz Ch; Hege HC; Spuler A
    J R Soc Interface; 2012 Apr; 9(69):677-88. PubMed ID: 21957117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamics in Ruptured Intracranial Aneurysms with Known Rupture Points.
    Li M; Wang J; Liu J; Zhao C; Yang X
    World Neurosurg; 2018 Oct; 118():e721-e726. PubMed ID: 30010065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wall shear stress at the initiation site of cerebral aneurysms.
    Geers AJ; Morales HG; Larrabide I; Butakoff C; Bijlenga P; Frangi AF
    Biomech Model Mechanobiol; 2017 Feb; 16(1):97-115. PubMed ID: 27440126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between hemodynamics, morphology, and rupture risk of intracranial aneurysms: a computational fluid modeling study.
    Qiu T; Jin G; Xing H; Lu H
    Neurol Sci; 2017 Jun; 38(6):1009-1018. PubMed ID: 28285454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture.
    Cebral JR; Vazquez M; Sforza DM; Houzeaux G; Tateshima S; Scrivano E; Bleise C; Lylyk P; Putman CM
    J Neurointerv Surg; 2015 Jul; 7(7):530-6. PubMed ID: 24827066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology.
    Schnell S; Ansari SA; Vakil P; Wasielewski M; Carr ML; Hurley MC; Bendok BR; Batjer H; Carroll TJ; Carr J; Markl M
    J Magn Reson Imaging; 2014 Jan; 39(1):120-31. PubMed ID: 24151067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows.
    Mazzi V; Gallo D; Calò K; Najafi M; Khan MO; De Nisco G; Steinman DA; Morbiducci U
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1403-1423. PubMed ID: 31865482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic Changes in the Treatment of Multiple Intracranial Aneurysms: A Computational Fluid Dynamics Study.
    Thenier-Villa JL; Riveiro Rodríguez A; Martínez-Rolán RM; Gelabert-González M; González-Vargas PM; Galarraga Campoverde RA; Díaz Molina J; De La Lama Zaragoza A; Martínez-Cueto P; Pou J; Conde Alonso C
    World Neurosurg; 2018 Oct; 118():e631-e638. PubMed ID: 30017759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation.
    Russell JH; Kelson N; Barry M; Pearcy M; Fletcher DF; Winter CD
    Neurosurgery; 2013 Dec; 73(6):1061-8; discussion 1068-9. PubMed ID: 23949275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J; Siddiqui AH; Meng H
    J Biomech; 2014 Dec; 47(16):3882-90. PubMed ID: 25446264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of wall shear stress insult to the growth of small unruptured cerebral aneurysms in longitudinal 3D-TOF-MRA.
    Sun L; Wang J; Li M; Li M; Zhu Y
    J Neurol Sci; 2020 Jun; 413():116798. PubMed ID: 32251870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colocalization of thin-walled dome regions with low hemodynamic wall shear stress in unruptured cerebral aneurysms.
    Kadasi LM; Dent WC; Malek AM
    J Neurosurg; 2013 Jul; 119(1):172-9. PubMed ID: 23540271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.