These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 18688327)

  • 1. Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface.
    Chung JW; An BK; Kim JW; Kim JJ; Park SY
    Chem Commun (Camb); 2008 Jul; (26):2998-3000. PubMed ID: 18688327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties.
    Song X; Zhai J; Wang Y; Jiang L
    J Phys Chem B; 2005 Mar; 109(9):4048-52. PubMed ID: 16851462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders.
    Wu X; Shi G
    J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force.
    Li Y; Zheng M; Ma L; Zhong M; Shen W
    Inorg Chem; 2008 Apr; 47(8):3140-3. PubMed ID: 18318487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically modified superhydrophobic WO(x) nanowire arrays and UV photopatterning.
    Kwak G; Lee M; Yong K
    Langmuir; 2010 Jun; 26(12):9964-7. PubMed ID: 20369846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.
    Qian B; Shen Z
    Langmuir; 2005 Sep; 21(20):9007-9. PubMed ID: 16171323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures.
    Nishimoto S; Sekine H; Zhang X; Liu Z; Nakata K; Murakami T; Koide Y; Fujishima A
    Langmuir; 2009 Jul; 25(13):7226-8. PubMed ID: 19563218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of transparent superhydrophobic surfaces by spray deposition.
    Hwang HS; Kim NH; Lee SG; Lee DY; Cho K; Park I
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2179-83. PubMed ID: 21728363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic surface from Cu-Zn alloy by one step O2 concentration dependent etching.
    Wu W; Chen M; Liang S; Wang X; Chen J; Zhou F
    J Colloid Interface Sci; 2008 Oct; 326(2):478-82. PubMed ID: 18621380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors.
    Ito Y; Virkar AA; Mannsfeld S; Oh JH; Toney M; Locklin J; Bao Z
    J Am Chem Soc; 2009 Jul; 131(26):9396-404. PubMed ID: 19518097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Self-Induced Growth of AlGaAs Nanoneedles on Silicon Substrates Using Metal Organic Chemical Vapor Deposition Technique.
    Bag RK; Singh S; Tyagi R; Pandya DK; Singh R
    J Nanosci Nanotechnol; 2016 Jan; 16(1):973-80. PubMed ID: 27398556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-area unmodified superhydrophobic copper substrate can be prepared by an electroless replacement deposition.
    Song W; Zhang J; Xie Y; Cong Q; Zhao B
    J Colloid Interface Sci; 2009 Jan; 329(1):208-11. PubMed ID: 18950783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-performance correlations in vapor phase deposited self-assembled nanodielectrics for organic field-effect transistors.
    DiBenedetto SA; Frattarelli DL; Facchetti A; Ratner MA; Marks TJ
    J Am Chem Soc; 2009 Aug; 131(31):11080-90. PubMed ID: 19606862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates.
    Xu W; Liu H; Lu S; Xi J; Wang Y
    Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular templates for nanoflake-metal surfaces.
    Shen Y; Wang J; Kuhlmann U; Hildebrandt P; Ariga K; Möhwald H; Kurth DG; Nakanishi T
    Chemistry; 2009; 15(12):2763-7. PubMed ID: 19156814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding.
    Han JT; Lee DH; Ryu CY; Cho K
    J Am Chem Soc; 2004 Apr; 126(15):4796-7. PubMed ID: 15080681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-catalytic and selective growth of ZnO nanoneedles by micro-contact printing and CVD.
    Lee SS; Kim HJ; Sung K; Lee YK; Chung TM; Kim CG; An KS
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3561-4. PubMed ID: 19051911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning.
    Bhushan B; Koch K; Jung YC
    Ultramicroscopy; 2009 Jul; 109(8):1029-34. PubMed ID: 19345499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X; He J
    Langmuir; 2009 Oct; 25(19):11822-6. PubMed ID: 19788228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin films of metal-organic frameworks.
    Zacher D; Shekhah O; Wöll C; Fischer RA
    Chem Soc Rev; 2009 May; 38(5):1418-29. PubMed ID: 19384445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.