These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Structural properties of naked gold nanoparticles formed by synchrotron X-ray irradiation. Wang CH; Chien CC; Yu YL; Liu CJ; Lee CF; Chen CH; Hwu Y; Yang CS; Je JH; Margaritondo G J Synchrotron Radiat; 2007 Nov; 14(Pt 6):477-82. PubMed ID: 17960029 [TBL] [Abstract][Full Text] [Related]
10. Observation of spectral anisotropy of gold nanoparticles. Cang H; Montiel D; Xu CS; Yang H J Chem Phys; 2008 Jul; 129(4):044503. PubMed ID: 18681656 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of high concentration block copolymer-mediated gold nanoparticles. Ray D; Aswal VK; Kohlbrecher J Langmuir; 2011 Apr; 27(7):4048-56. PubMed ID: 21366279 [TBL] [Abstract][Full Text] [Related]
12. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation. Contado C; Argazzi R J Chromatogr A; 2009 Dec; 1216(52):9088-98. PubMed ID: 19717161 [TBL] [Abstract][Full Text] [Related]
13. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Zhao W; Lin L; Hsing IM Bioconjug Chem; 2009 Jun; 20(6):1218-22. PubMed ID: 19425573 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. Polte J; Ahner TT; Delissen F; Sokolov S; Emmerling F; Thünemann AF; Kraehnert R J Am Chem Soc; 2010 Feb; 132(4):1296-301. PubMed ID: 20102229 [TBL] [Abstract][Full Text] [Related]
15. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. Liu B; Xie J; Lee JY; Ting YP; Chen JP J Phys Chem B; 2005 Aug; 109(32):15256-63. PubMed ID: 16852932 [TBL] [Abstract][Full Text] [Related]
16. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan. Potara M; Maniu D; Astilean S Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258 [TBL] [Abstract][Full Text] [Related]
17. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine. Stobiecka M; Deeb J; Hepel M Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518 [TBL] [Abstract][Full Text] [Related]
18. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
19. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy. Qi ZM; Xia S; Zou H Nanotechnology; 2009 Jun; 20(25):255702. PubMed ID: 19491460 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic and microscopic investigation of gold nanoparticle formation: ligand and temperature effects on rate and particle size. Sardar R; Shumaker-Parry JS J Am Chem Soc; 2011 Jun; 133(21):8179-90. PubMed ID: 21548572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]