BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18688467)

  • 1. Characterization of products formed in the reaction of ozone with alpha-pinene: case for organic peroxides.
    Venkatachari P; Hopke PK
    J Environ Monit; 2008 Aug; 10(8):966-74. PubMed ID: 18688467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation.
    Chen X; Hopke PK; Carter WP
    Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of organic hydroperoxides and hydroperoxy acids in secondary organic aerosol formed during the ozonolysis of different monoterpenes and sesquiterpenes by on-line analysis using atmospheric pressure chemical ionization ion trap mass spectrometry.
    Reinnig MC; Warnke J; Hoffmann T
    Rapid Commun Mass Spectrom; 2009 Jun; 23(11):1735-41. PubMed ID: 19412924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion mobility distributions during the initial stages of new particle formation by the ozonolysis of α-pinene.
    Viitanen AK; Saukko E; Virtanen A; Yli-Pirilää P; Smith JN; Joutsensaari J; Mäkelä JM
    Environ Sci Technol; 2010 Dec; 44(23):8917-23. PubMed ID: 21062070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3.
    Docherty KS; Wu W; Lim YB; Ziemann PJ
    Environ Sci Technol; 2005 Jun; 39(11):4049-59. PubMed ID: 15984782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct photolysis of α-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content.
    Epstein SA; Blair SL; Nizkorodov SA
    Environ Sci Technol; 2014 Oct; 48(19):11251-8. PubMed ID: 25165890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stability of secondary ozonides from monoterpenes studied by mass spectrometry.
    Vibenholt A; Nørgaard AW; Clausen PA; Wolkoff P
    Chemosphere; 2009 Jul; 76(4):572-7. PubMed ID: 19329138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric solids analysis probe mass spectrometry: a new approach for airborne particle analysis.
    Bruns EA; Perraud V; Greaves J; Finlayson-Pitts BJ
    Anal Chem; 2010 Jul; 82(14):5922-7. PubMed ID: 20568716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic aerosol yields from α-pinene oxidation: bridging the gap between first-generation yields and aging chemistry.
    Henry KM; Lohaus T; Donahue NM
    Environ Sci Technol; 2012 Nov; 46(22):12347-54. PubMed ID: 23088520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile.
    Ham JE; Wells JR
    Indoor Air; 2008 Oct; 18(5):394-407. PubMed ID: 18647191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct analysis of highly oxidised organic aerosol constituents by on-line ion trap mass spectrometry in the negative-ion mode.
    Warscheid B; Hoffmann T
    Rapid Commun Mass Spectrom; 2002; 16(6):496-504. PubMed ID: 11870886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition domains in monoterpene secondary organic aerosol.
    Heaton KJ; Sleighter RL; Hatcher PG; Hall WA; Johnston MV
    Environ Sci Technol; 2009 Oct; 43(20):7797-802. PubMed ID: 19921896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary organic aerosol from alpha-pinene ozonolysis in dynamic chamber system.
    Chen X; Hopke PK
    Indoor Air; 2009 Aug; 19(4):335-45. PubMed ID: 19500172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular composition of monoterpene secondary organic aerosol at low mass loading.
    Gao Y; Hall WA; Johnston MV
    Environ Sci Technol; 2010 Oct; 44(20):7897-902. PubMed ID: 20853884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of alpha-pinene.
    Ma Y; Russell AT; Marston G
    Phys Chem Chem Phys; 2008 Aug; 10(29):4294-312. PubMed ID: 18633550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.
    Iinuma Y; Böge O; Kahnt A; Herrmann H
    Phys Chem Chem Phys; 2009 Sep; 11(36):7985-97. PubMed ID: 19727505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistep derivatization method for the determination of multifunctional oxidation products from the reaction of α-pinene with ozone.
    Kowalewski K; Gierczak T
    J Chromatogr A; 2011 Oct; 1218(41):7264-74. PubMed ID: 21907342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomers in the early stage of biogenic secondary organic aerosol formation and growth.
    Heaton KJ; Dreyfus MA; Wang S; Johnston MV
    Environ Sci Technol; 2007 Sep; 41(17):6129-36. PubMed ID: 17937292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of organic nitrates in the NO3 radical initiated oxidation of alpha-pinene by atmospheric pressure chemical ionization mass spectrometry.
    Perraud V; Bruns EA; Ezell MJ; Johnson SN; Greaves J; Finlayson-Pitts BJ
    Environ Sci Technol; 2010 Aug; 44(15):5887-93. PubMed ID: 20608721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.