These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18688507)

  • 1. On phytochrome absorption and the phytochrome photoequilibrium in a green leaf: environmental sensitivity and photoequilibrium time.
    Rivadossi A; Garlaschi FM; Casazza AP; Zucchelli G; Jennings RC
    Photochem Photobiol Sci; 2008 Aug; 7(8):986-90. PubMed ID: 18688507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Control of chlorophyll a synthesis by phytochrome and cryptochrome in the red alga Corallina elongata Ellis et Soland].
    López-Figueroa F; Niell FX
    Rev Esp Fisiol; 1988 Sep; 44(3):287-94. PubMed ID: 3231882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Predictive Value of Phytochrome Photoequilibrium: Consideration of Spectral Distortion Within a Leaf.
    Kusuma P; Bugbee B
    Front Plant Sci; 2021; 12():596943. PubMed ID: 34108976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light.
    Finlayson SA; Hays DB; Morgan PW
    Plant Cell Environ; 2007 Aug; 30(8):952-62. PubMed ID: 17617823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced global structural changes in phytochrome A regulating photomorphogenesis in plants.
    Nakasako M; Iwata T; Inoue K; Tokutomi S
    FEBS J; 2005 Jan; 272(2):603-12. PubMed ID: 15654897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function.
    Merzlyak M; Solovchenko A; Pogosyan S
    Photochem Photobiol Sci; 2005 Apr; 4(4):333-40. PubMed ID: 15803203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients.
    Cordón GB; Lagorio MG
    Photochem Photobiol Sci; 2007 Aug; 6(8):873-82. PubMed ID: 17668118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants.
    Suetsugu N; Wada M
    Photochem Photobiol; 2007; 83(1):87-93. PubMed ID: 16542113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.
    Terashima I; Fujita T; Inoue T; Chow WS; Oguchi R
    Plant Cell Physiol; 2009 Apr; 50(4):684-97. PubMed ID: 19246458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of temperature with other environmental factors in controlling the development of plants.
    Porter JR; Delecolle R
    Symp Soc Exp Biol; 1988; 42():133-56. PubMed ID: 3077855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of light of various spectral composition on kinetics of changes in a green leaf resistivity].
    Belov AA; Kuznetsova SA; Kukushkin AK
    Biofizika; 2001; 46(3):505-11. PubMed ID: 11449552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in leaf optical properties associated with light-dependent chloroplast movements.
    Davis PA; Caylor S; Whippo CW; Hangarter RP
    Plant Cell Environ; 2011 Dec; 34(12):2047-59. PubMed ID: 21819411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of blue light on leaf mesophyll conductance.
    Loreto F; Tsonev T; Centritto M
    J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves.
    Bartoli CG; Tambussi EA; Diego F; Foyer CH
    FEBS Lett; 2009 Jan; 583(1):118-22. PubMed ID: 19059408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant adaptation to dynamically changing environment: the shade avoidance response.
    Ruberti I; Sessa G; Ciolfi A; Possenti M; Carabelli M; Morelli G
    Biotechnol Adv; 2012; 30(5):1047-58. PubMed ID: 21888962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between phytochrome-photoequilibrium and Development in light grown Chenopodium album L.
    Morgan DC; Smith H
    Planta; 1978 Jan; 142(2):187-93. PubMed ID: 24408101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.