BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18688710)

  • 1. Inhibitory effect of antioxidants on hydroxyl radical generation from methylguanidine: an ESR study.
    Noda Y; Mankura M
    Neurochem Res; 2009 Apr; 34(4):734-8. PubMed ID: 18688710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical generation caused by the reaction of singlet oxygen with a spin trap, DMPO, increases significantly in the presence of biological reductants.
    Nishizawa C; Takeshita K; Ueda J; Mizuno M; Suzuki KT; Ozawa T
    Free Radic Res; 2004 Apr; 38(4):385-92. PubMed ID: 15190935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of nitroxide radicals by phenolic and thiol antioxidants.
    Hiramoto K; Ojima N; Kikugawa K
    Free Radic Res; 1997 Jul; 27(1):45-53. PubMed ID: 9269579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the activity of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-be nzopyran-6-yl-hydrogen phosphate] potassium salt in hydroxyl radical elimination.
    Tomita T; Kashima M; Tsujimoto Y
    Chem Pharm Bull (Tokyo); 2000 Mar; 48(3):330-3. PubMed ID: 10726851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of phenolic antioxidants on various active oxygen species.
    Cynshi O; Takashima Y; Katoh Y; Tamura K; Sato M; Fujita Y
    J Biolumin Chemilumin; 1995; 10(5):261-9. PubMed ID: 8533607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant properties of EPC-K1: a study on mechanisms.
    Wei T; Chen C; Li F; Zhao B; Hou J; Xin W; Mori A
    Biophys Chem; 1999 Mar; 77(2-3):153-60. PubMed ID: 10326248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method of measuring hydroxyl radical-scavenging activity of antioxidants using gamma-irradiation.
    Yoshioka H; Ohashi Y; Akaboshi M; Senba Y; Yoshioka H
    Free Radic Res; 2001 Sep; 35(3):265-71. PubMed ID: 11697125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin trapping endogenous radicals in MC-1010 cells: evidence for hydroxyl radical and carbon-centered ascorbyl radical adducts.
    Bernofsky C; Bandara BM
    Mol Cell Biochem; 1995 Jul; 148(2):155-64. PubMed ID: 8594420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate-dependent recycling of the vitamin E homologue Trolox by dihydrolipoate and glutathione in murine skin homogenates.
    Guo Q; Packer L
    Free Radic Biol Med; 2000 Aug; 29(3-4):368-74. PubMed ID: 11035266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Anticonvulsant Zonisamide Inhibits Hydroxyl Radical Generated from Methylguanidine.
    Noda Y; Masumizu T; Mori A
    Acta Med Okayama; 2016 Oct; 70(5):371-375. PubMed ID: 27777429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effect of fermented papaya preparation on hydroxyl radical generation from methylguanidine.
    Noda Y; Murakami S; Mankura M; Mori A
    J Clin Biochem Nutr; 2008 Nov; 43(3):185-90. PubMed ID: 19015753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chlorogenic acid on hydroxyl radical.
    Zang LY; Cosma G; Gardner H; Castranova V; Vallyathan V
    Mol Cell Biochem; 2003 May; 247(1-2):205-10. PubMed ID: 12841649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESR spin trapping investigation on peroxynitrite decomposition: no evidence for hydroxyl radical production.
    Shi X; Lenhart A; Mao Y
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1515-21. PubMed ID: 7945300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of thiyl and ascorbyl radicals in the reaction of peroxynitrite with thiols and ascorbate at physiological pH.
    Shi X; Rojanasakul Y; Gannett P; Liu K; Mao Y; Daniel LN; Ahmed N; Saffiotti U
    J Inorg Biochem; 1994 Nov; 56(2):77-86. PubMed ID: 7798895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical generation by dissociation of water molecules during 1.65 MHz frequency ultrasound irradiation under aerobic conditions.
    Miyaji A; Kohno M; Inoue Y; Baba T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):178-182. PubMed ID: 28040432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. l-Dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals.
    Okazaki Y; Tanaka H; Hori M; Toyokuni S
    Arch Biochem Biophys; 2019 Jul; 669():87-95. PubMed ID: 31153952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide anion and hydroxyl radical scavenging activities of vegetable extracts measured using electron spin resonance.
    Kaneyuki T; Noda Y; Traber MG; Mori A; Packer L
    Biochem Mol Biol Int; 1999 Jun; 47(6):979-89. PubMed ID: 10410244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin of the hydroxyl radical oxygen in the Fenton reaction.
    Lloyd RV; Hanna PM; Mason RP
    Free Radic Biol Med; 1997; 22(5):885-8. PubMed ID: 9119257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-electron reduction of vanadate by ascorbate and related free radical generation at physiological pH.
    Ding M; Gannett PM; Rojanasakul Y; Liu K; Shi X
    J Inorg Biochem; 1994 Aug; 55(2):101-12. PubMed ID: 8051539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system.
    Noda Y; Anzai K; Mori A; Kohno M; Shinmei M; Packer L
    Biochem Mol Biol Int; 1997 Jun; 42(1):35-44. PubMed ID: 9192083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.