BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 18688829)

  • 1. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols.
    Voitl T; Rudolf von Rohr P
    ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Weckhuysen BM
    ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.
    Bouxin F; Baumberger S; Renault JH; Dole P
    Bioresour Technol; 2011 May; 102(10):5567-73. PubMed ID: 21435863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures.
    Zhao X; Zhu JY
    ChemSusChem; 2016 Jan; 9(2):197-207. PubMed ID: 26692572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.
    Gosselink RJ; Teunissen W; van Dam JE; de Jong E; Gellerstedt G; Scott EL; Sanders JP
    Bioresour Technol; 2012 Feb; 106():173-7. PubMed ID: 22197338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction kinetics of the hydrothermal treatment of lignin.
    Zhang B; Huang HJ; Ramaswamy S
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):119-31. PubMed ID: 18401758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization.
    Du X; Liu W; Zhang Z; Mulyadi A; Brittain A; Gong J; Deng Y
    ChemSusChem; 2017 Mar; 10(5):847-854. PubMed ID: 28102938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic depolymerization of lignin over cesium exchanged and transition-metal substituted heterogeneous polyoxometalates.
    Xu W; Li X; Shi J
    Int J Biol Macromol; 2019 Aug; 135():171-179. PubMed ID: 31125654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization.
    Rafiee M; Alherech M; Karlen SD; Stahl SS
    J Am Chem Soc; 2019 Sep; 141(38):15266-15276. PubMed ID: 31483640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers.
    Megiatto JD; Oliveira FB; Rosa DS; Gardrat C; Castellan A; Frollini E
    Macromol Biosci; 2007 Sep; 7(9-10):1121-31. PubMed ID: 17676656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.
    Anderson E; Crisci A; Murugappan K; Román-Leshkov Y
    ChemSusChem; 2017 May; 10(10):2226-2234. PubMed ID: 28371565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique.
    Balakshin MY; Capanema EA; Chen CL; Gracz HS
    J Agric Food Chem; 2003 Oct; 51(21):6116-27. PubMed ID: 14518932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals.
    Lee HS; Jae J; Ha JM; Suh DJ
    Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.
    Baptista C; Robert D; Duarte AP
    Bioresour Technol; 2008 May; 99(7):2349-56. PubMed ID: 17604620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture.
    Shi N; Liu D; Huang Q; Guo Z; Jiang R; Wang F; Chen Q; Li M; Shen G; Wen F
    Bioresour Technol; 2019 Jul; 283():174-183. PubMed ID: 30904697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.