These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 18688829)
1. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. Voitl T; Rudolf von Rohr P ChemSusChem; 2008; 1(8-9):763-9. PubMed ID: 18688829 [TBL] [Abstract][Full Text] [Related]
2. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds. Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224 [TBL] [Abstract][Full Text] [Related]
3. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. Zakzeski J; Weckhuysen BM ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746 [TBL] [Abstract][Full Text] [Related]
4. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds. Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557 [TBL] [Abstract][Full Text] [Related]
5. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers. Bouxin F; Baumberger S; Renault JH; Dole P Bioresour Technol; 2011 May; 102(10):5567-73. PubMed ID: 21435863 [TBL] [Abstract][Full Text] [Related]
6. Efficient Conversion of Lignin to Electricity Using a Novel Direct Biomass Fuel Cell Mediated by Polyoxometalates at Low Temperatures. Zhao X; Zhu JY ChemSusChem; 2016 Jan; 9(2):197-207. PubMed ID: 26692572 [TBL] [Abstract][Full Text] [Related]
7. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Gosselink RJ; Teunissen W; van Dam JE; de Jong E; Gellerstedt G; Scott EL; Sanders JP Bioresour Technol; 2012 Feb; 106():173-7. PubMed ID: 22197338 [TBL] [Abstract][Full Text] [Related]
8. Reaction kinetics of the hydrothermal treatment of lignin. Zhang B; Huang HJ; Ramaswamy S Appl Biochem Biotechnol; 2008 Mar; 147(1-3):119-31. PubMed ID: 18401758 [TBL] [Abstract][Full Text] [Related]
9. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization. Du X; Liu W; Zhang Z; Mulyadi A; Brittain A; Gong J; Deng Y ChemSusChem; 2017 Mar; 10(5):847-854. PubMed ID: 28102938 [TBL] [Abstract][Full Text] [Related]
10. On the mechanism of the laccase-mediator system in the oxidation of lignin. Crestini C; Jurasek L; Argyropoulos DS Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147 [TBL] [Abstract][Full Text] [Related]
11. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175 [TBL] [Abstract][Full Text] [Related]
12. Catalytic depolymerization of lignin over cesium exchanged and transition-metal substituted heterogeneous polyoxometalates. Xu W; Li X; Shi J Int J Biol Macromol; 2019 Aug; 135():171-179. PubMed ID: 31125654 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Rafiee M; Alherech M; Karlen SD; Stahl SS J Am Chem Soc; 2019 Sep; 141(38):15266-15276. PubMed ID: 31483640 [TBL] [Abstract][Full Text] [Related]
14. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers. Megiatto JD; Oliveira FB; Rosa DS; Gardrat C; Castellan A; Frollini E Macromol Biosci; 2007 Sep; 7(9-10):1121-31. PubMed ID: 17676656 [TBL] [Abstract][Full Text] [Related]
15. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics. Anderson E; Crisci A; Murugappan K; Román-Leshkov Y ChemSusChem; 2017 May; 10(10):2226-2234. PubMed ID: 28371565 [TBL] [Abstract][Full Text] [Related]
16. The pyrolytic degradation of wood-derived lignin from pulping process. Shen DK; Gu S; Luo KH; Wang SR; Fang MX Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972 [TBL] [Abstract][Full Text] [Related]
17. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique. Balakshin MY; Capanema EA; Chen CL; Gracz HS J Agric Food Chem; 2003 Oct; 51(21):6116-27. PubMed ID: 14518932 [TBL] [Abstract][Full Text] [Related]
18. Hydro- and solvothermolysis of kraft lignin for maximizing production of monomeric aromatic chemicals. Lee HS; Jae J; Ha JM; Suh DJ Bioresour Technol; 2016 Mar; 203():142-9. PubMed ID: 26722814 [TBL] [Abstract][Full Text] [Related]
19. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Baptista C; Robert D; Duarte AP Bioresour Technol; 2008 May; 99(7):2349-56. PubMed ID: 17604620 [TBL] [Abstract][Full Text] [Related]
20. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture. Shi N; Liu D; Huang Q; Guo Z; Jiang R; Wang F; Chen Q; Li M; Shen G; Wen F Bioresour Technol; 2019 Jul; 283():174-183. PubMed ID: 30904697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]