These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 18689414)
1. Phonotactic selectivity in two cryptic species of gray treefrogs: effects of differences in pulse rate, carrier frequency and playback level. Gerhardt HC J Exp Biol; 2008 Aug; 211(Pt 16):2609-16. PubMed ID: 18689414 [TBL] [Abstract][Full Text] [Related]
2. Advertisement-call preferences in diploid-tetraploid treefrogs (Hyla chrysoscelis and Hyla versicolor): implications for mate choice and the evolution of communication systems. Gerhardt HC Evolution; 2005 Feb; 59(2):395-408. PubMed ID: 15807424 [TBL] [Abstract][Full Text] [Related]
3. Species specificity of temporal processing in the auditory midbrain of gray treefrogs: long-interval neurons. Hanson JL; Rose GJ; Leary CJ; Graham JA; Alluri RK; Vasquez-Opazo GA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jan; 202(1):67-79. PubMed ID: 26614093 [TBL] [Abstract][Full Text] [Related]
4. Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons. Rose GJ; Hanson JL; Leary CJ; Graham JA; Alluri RK; Vasquez-Opazo GA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 May; 201(5):485-503. PubMed ID: 25764308 [TBL] [Abstract][Full Text] [Related]
5. Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). Gerhardt HC; Martínez-Rivera CC; Schwartz JJ; Marshall VT; Murphy CG J Exp Biol; 2007 Sep; 210(Pt 17):2990-8. PubMed ID: 17704074 [TBL] [Abstract][Full Text] [Related]
6. A quantitative analysis of behavioral selectivity for pulse rise-time in the gray treefrog, Hyla versicolor. Gerhardt HC; Schul J J Comp Physiol A; 1999 Jul; 185(1):33-40. PubMed ID: 10450610 [TBL] [Abstract][Full Text] [Related]
7. Selective phonotaxis to advertisement calls in the grey treefrog Hyla versicolor: behavioral experiments and neurophysiological correlates. Diekamp B; Gerhardt HC J Comp Physiol A; 1995; 177(2):173-90. PubMed ID: 7636766 [TBL] [Abstract][Full Text] [Related]
8. Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Endepols H; Feng AS; Gerhardt HC; Schul J; Walkowiak W Behav Brain Res; 2003 Oct; 145(1-2):63-77. PubMed ID: 14529806 [TBL] [Abstract][Full Text] [Related]
9. Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Ward JL; Buerkle NP; Bee MA Hear Res; 2013 Dec; 306():63-75. PubMed ID: 24055623 [TBL] [Abstract][Full Text] [Related]
10. Frequency channel-dependent selectivity for temporal call characteristics in gray treefrogs, Reichert MS; Höbel G J Exp Biol; 2017 Apr; 220(Pt 7):1256-1266. PubMed ID: 28104800 [TBL] [Abstract][Full Text] [Related]
11. Female preferences for the spectral content of advertisement calls in Cope's gray treefrog (Hyla chrysoscelis). Gupta S; Bee MA J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Jan; 209(1):31-45. PubMed ID: 36305902 [TBL] [Abstract][Full Text] [Related]
12. Sound transmission and the recognition of temporally degraded sexual advertisement signals in Cope's gray treefrog (Hyla chrysoscelis). Kuczynski MC; Vélez A; Schwartz JJ; Bee MA J Exp Biol; 2010 Aug; 213(Pt 16):2840-50. PubMed ID: 20675554 [TBL] [Abstract][Full Text] [Related]
13. In vivo performance of trunk muscles in tree frogs during calling. Girgenrath M; Marsh RL J Exp Biol; 1997 Dec; 200(Pt 24):3101-8. PubMed ID: 9364018 [TBL] [Abstract][Full Text] [Related]
14. Differential effects of sound level and temporal structure of calls on phonotaxis by female gray treefrogs, Hyla versicolor. Christie KW; Schul J; Feng AS J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):223-238. PubMed ID: 30927060 [TBL] [Abstract][Full Text] [Related]
15. Species specificity and temperature dependency of temporal processing by the auditory midbrain of two species of treefrogs. Rose GJ; Brenowitz EA; Capranica RR J Comp Physiol A; 1985 Dec; 157(6):763-9. PubMed ID: 3837112 [TBL] [Abstract][Full Text] [Related]
16. The role of call frequency and the auditory papillae in phonotactic behavior in male Dart-poison frogs Epipedobates femoralis (Dendrobatidae). Hödl W; Amézquita A; Narins PM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Oct; 190(10):823-9. PubMed ID: 15278399 [TBL] [Abstract][Full Text] [Related]
17. Power output of sound-producing muscles in the tree frogs Hyla versicolor and Hyla chrysoscelis. Girgenrath M; Marsh RL J Exp Biol; 1999 Nov; 202(Pt 22):3225-37. PubMed ID: 10539971 [TBL] [Abstract][Full Text] [Related]
18. Contractile properties of muscles used in sound production and locomotion in two species of gray tree frog. Marsh RL J Exp Biol; 1999 Nov; 202(Pt 22):3215-23. PubMed ID: 10539970 [TBL] [Abstract][Full Text] [Related]
19. Phonotaxis to male's calls embedded within a chorus by female gray treefrogs, Hyla versicolor. Christie K; Schul J; Feng AS J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Aug; 196(8):569-79. PubMed ID: 20577882 [TBL] [Abstract][Full Text] [Related]
20. Mid-frequency suppression in the green treefrog (Hyla cinerea): mechanisms and implications for the evolution of acoustic communication. Gerhardt HC; Höbel G J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):707-14. PubMed ID: 15928971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]