These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18689476)

  • 21. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis.
    Molière N; Turgay K
    Res Microbiol; 2009 Nov; 160(9):637-44. PubMed ID: 19781636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase alpha can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis.
    Nakano MM; Zhu Y; Liu J; Reyes DY; Yoshikawa H; Zuber P
    Mol Microbiol; 2000 Aug; 37(4):869-84. PubMed ID: 10972808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis.
    Nakano MM; Hajarizadeh F; Zhu Y; Zuber P
    Mol Microbiol; 2001 Oct; 42(2):383-94. PubMed ID: 11703662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus.
    Stahlhut SG; Alqarzaee AA; Jensen C; Fisker NS; Pereira AR; Pinho MG; Thomas VC; Frees D
    Sci Rep; 2017 Sep; 7(1):11739. PubMed ID: 28924169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation in Bacillus subtilis.
    Liu J; Cosby WM; Zuber P
    Mol Microbiol; 1999 Jul; 33(2):415-28. PubMed ID: 10411757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis.
    Webb CD; Decatur A; Teleman A; Losick R
    J Bacteriol; 1995 Oct; 177(20):5906-11. PubMed ID: 7592342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis.
    Molière N; Hoßmann J; Schäfer H; Turgay K
    Front Microbiol; 2016; 7():315. PubMed ID: 27014237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of SsrA-tagged proteins in streptococci.
    Tao L; Biswas I
    Microbiology (Reading); 2015 Apr; 161(Pt 4):884-94. PubMed ID: 25645948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis.
    van Ooij C; Eichenberger P; Losick R
    J Bacteriol; 2004 Jul; 186(14):4441-8. PubMed ID: 15231775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementation studies with human ClpP in Bacillus subtilis.
    Dittmar D; Reder A; Schlüter R; Riedel K; Hecker M; Gerth U
    Biochim Biophys Acta Mol Cell Res; 2020 Sep; 1867(9):118744. PubMed ID: 32442436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic analysis predicts structural divergence for proteobacterial ClpC proteins.
    Miller JM; Chaudhary H; Marsee JD
    J Struct Biol; 2018 Jan; 201(1):52-62. PubMed ID: 29129755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis.
    Derré I; Rapoport G; Devine K; Rose M; Msadek T
    Mol Microbiol; 1999 May; 32(3):581-93. PubMed ID: 10320580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation.
    Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL
    J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SpoIIAB is an anti-sigma factor that binds to and inhibits transcription by regulatory protein sigma F from Bacillus subtilis.
    Duncan L; Losick R
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2325-9. PubMed ID: 8460142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirement of the zinc-binding domain of ClpX for Spx proteolysis in Bacillus subtilis and effects of disulfide stress on ClpXP activity.
    Zhang Y; Zuber P
    J Bacteriol; 2007 Nov; 189(21):7669-80. PubMed ID: 17827297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase.
    Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA
    Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arginine phosphorylation marks proteins for degradation by a Clp protease.
    Trentini DB; Suskiewicz MJ; Heuck A; Kurzbauer R; Deszcz L; Mechtler K; Clausen T
    Nature; 2016 Nov; 539(7627):48-53. PubMed ID: 27749819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival.
    Chastanet A; Prudhomme M; Claverys JP; Msadek T
    J Bacteriol; 2001 Dec; 183(24):7295-307. PubMed ID: 11717289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis.
    Kock H; Gerth U; Hecker M
    Mol Microbiol; 2004 Feb; 51(4):1087-102. PubMed ID: 14763982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.