These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18689501)

  • 1. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses.
    Arciero JC; Carlson BE; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1562-71. PubMed ID: 18689501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses.
    Carlson BE; Arciero JC; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1572-9. PubMed ID: 18723769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks.
    Roy TK; Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1945-52. PubMed ID: 22408023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent effects of low-O(2) tension and iloprost on ATP release from erythrocytes of humans with type 2 diabetes: implications for O(2) supply to skeletal muscle.
    Sprague RS; Goldman D; Bowles EA; Achilleus D; Stephenson AH; Ellis CG; Ellsworth ML
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H566-73. PubMed ID: 20511412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional sympatholysis and sympathetic escape in a theoretical model for blood flow regulation.
    Roy TK; Secomb TW
    Front Physiol; 2014; 5():192. PubMed ID: 24904428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity.
    Deonikar P; Kavdia M
    Microvasc Res; 2010 Dec; 80(3):464-76. PubMed ID: 20888842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modelling of local regulation of blood flow by veno-arterial diffusion of vasoactive metabolites.
    Kopyltsov AV; Groebe K
    Adv Exp Med Biol; 1997; 411():303-11. PubMed ID: 9269441
    [No Abstract]   [Full Text] [Related]  

  • 9. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation.
    Koller A; Kaley G
    Circ Res; 1990 Aug; 67(2):529-34. PubMed ID: 2115825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arteriolar responses to extracellular ATP in striated muscle.
    McCullough WT; Collins DM; Ellsworth ML
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1886-91. PubMed ID: 9139975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of blood flow in the microcirculation: role of conducted vasodilation.
    Bagher P; Segal SS
    Acta Physiol (Oxf); 2011 Jul; 202(3):271-84. PubMed ID: 21199397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes.
    Sharan M; Popel AS
    J Theor Biol; 2002 Jun; 216(4):479-500. PubMed ID: 12151262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma ATP during exercise: possible role in regulation of coronary blood flow.
    Farias M; Gorman MW; Savage MV; Feigl EO
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1586-90. PubMed ID: 15563530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venular-arteriolar diffusion of adenosine in hamster cremaster microcirculation.
    Hester RL
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1918-24. PubMed ID: 2360679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP as a mediator of erythrocyte-dependent regulation of skeletal muscle blood flow and oxygen delivery in humans.
    González-Alonso J
    J Physiol; 2012 Oct; 590(20):5001-13. PubMed ID: 22711955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rabbit erythrocytes release ATP and dilate skeletal muscle arterioles in the presence of reduced oxygen tension.
    Sprague RS; Hanson MS; Achilleus D; Bowles EA; Stephenson AH; Sridharan M; Adderley S; Procknow J; Ellsworth ML
    Pharmacol Rep; 2009; 61(1):183-90. PubMed ID: 19307706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow.
    Richardson KJ; Kuck L; Simmonds MJ
    Am J Physiol Heart Circ Physiol; 2020 Oct; 319(4):H866-H872. PubMed ID: 32857630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between adenosine and flow-induced dilation in coronary microvascular network.
    Liao JC; Kuo L
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1571-81. PubMed ID: 9139938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle.
    Ellsworth ML; Ellis CG; Sprague RS
    Acta Physiol (Oxf); 2016 Mar; 216(3):265-76. PubMed ID: 26336065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of blood flow in the microcirculation.
    Segal SS
    Microcirculation; 2005; 12(1):33-45. PubMed ID: 15804972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.