These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18689525)
1. The gluconeogenic enzyme fructose-1,6-bisphosphatase is dispensable for growth of the yeast Yarrowia lipolytica in gluconeogenic substrates. Jardón R; Gancedo C; Flores CL Eukaryot Cell; 2008 Oct; 7(10):1742-9. PubMed ID: 18689525 [TBL] [Abstract][Full Text] [Related]
2. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Navas MA; Cerdán S; Gancedo JM Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1290-4. PubMed ID: 8381962 [TBL] [Abstract][Full Text] [Related]
3. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Georis I; Krijger JJ; Breunig KD; Vandenhaute J Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849 [TBL] [Abstract][Full Text] [Related]
4. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges D; Proft M; Entian KD Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685 [TBL] [Abstract][Full Text] [Related]
5. The dimorphic yeast Yarrowia lipolytica possesses an atypical phosphofructokinase: characterization of the enzyme and its encoding gene. Flores CL; Martínez-Costa OH; Sánchez V; Gancedo C; Aragón JJ Microbiology (Reading); 2005 May; 151(Pt 5):1465-1474. PubMed ID: 15870456 [TBL] [Abstract][Full Text] [Related]
6. Vid24p, a novel protein localized to the fructose-1, 6-bisphosphatase-containing vesicles, regulates targeting of fructose-1,6-bisphosphatase from the vesicles to the vacuole for degradation. Chiang MC; Chiang HL J Cell Biol; 1998 Mar; 140(6):1347-56. PubMed ID: 9508768 [TBL] [Abstract][Full Text] [Related]
7. Yarrowia lipolytica mutants devoid of pyruvate carboxylase activity show an unusual growth phenotype. Flores CL; Gancedo C Eukaryot Cell; 2005 Feb; 4(2):356-64. PubMed ID: 15701798 [TBL] [Abstract][Full Text] [Related]
8. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth. Lazar Z; Neuvéglise C; Rossignol T; Devillers H; Morin N; Robak M; Nicaud JM; Crutz-Le Coq AM Fungal Genet Biol; 2017 Mar; 100():1-12. PubMed ID: 28064038 [TBL] [Abstract][Full Text] [Related]
9. The levels of yeast gluconeogenic mRNAs respond to environmental factors. Mercado JJ; Smith R; Sagliocco FA; Brown AJ; Gancedo JM Eur J Biochem; 1994 Sep; 224(2):473-81. PubMed ID: 7925362 [TBL] [Abstract][Full Text] [Related]
10. A regulatory factor, Fil1p, involved in derepression of the isocitrate lyase gene in Saccharomyces cerevisiae--a possible mitochondrial protein necessary for protein synthesis in mitochondria. Kanai T; Takeshita S; Atomi H; Umemura K; Ueda M; Tanaka A Eur J Biochem; 1998 Aug; 256(1):212-20. PubMed ID: 9746366 [TBL] [Abstract][Full Text] [Related]
11. Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. Hirakawa K; Kobayashi S; Inoue T; Endoh-Yamagami S; Fukuda R; Ohta A J Biol Chem; 2009 Mar; 284(11):7126-37. PubMed ID: 19131334 [TBL] [Abstract][Full Text] [Related]
12. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Schöler A; Schüller HJ Mol Cell Biol; 1994 Jun; 14(6):3613-22. PubMed ID: 8196607 [TBL] [Abstract][Full Text] [Related]
13. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Dulermo T; Lazar Z; Dulermo R; Rakicka M; Haddouche R; Nicaud JM Biochim Biophys Acta; 2015 Sep; 1851(9):1107-17. PubMed ID: 25959598 [TBL] [Abstract][Full Text] [Related]
14. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955 [TBL] [Abstract][Full Text] [Related]
16. Elements from the cAMP signaling pathway are involved in the control of expression of the yeast gluconeogenic gene FBP1. Zaragoza O; Gancedo JM FEBS Lett; 2001 Oct; 506(3):262-6. PubMed ID: 11602258 [TBL] [Abstract][Full Text] [Related]
17. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis. Han BK; Emr SD J Biol Chem; 2013 Jul; 288(28):20633-45. PubMed ID: 23733183 [TBL] [Abstract][Full Text] [Related]
18. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116 [TBL] [Abstract][Full Text] [Related]
19. The Hsp70 chaperone Ssa1 is essential for catabolite induced degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase. Juretschke J; Menssen R; Sickmann A; Wolf DH Biochem Biophys Res Commun; 2010 Jul; 397(3):447-52. PubMed ID: 20513352 [TBL] [Abstract][Full Text] [Related]
20. Ubiquitous presence of gluconeogenic regulatory enzyme, fructose-1,6-bisphosphatase, within layers of rat retina. Mamczur P; Mazurek J; Rakus D Cell Tissue Res; 2010 Aug; 341(2):213-21. PubMed ID: 20614135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]