These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Assessment of the probabilities for evolutionary structural changes in protein folds. Viksna J; Gilbert D Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999 [TBL] [Abstract][Full Text] [Related]
4. PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Chen K; Kurgan L Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446 [TBL] [Abstract][Full Text] [Related]
5. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
6. Fast model-based protein homology detection without alignment. Hochreiter S; Heusel M; Obermayer K Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755 [TBL] [Abstract][Full Text] [Related]
7. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410 [TBL] [Abstract][Full Text] [Related]
8. Prediction of the phenotypic effects of non-synonymous single nucleotide polymorphisms using structural and evolutionary information. Bao L; Cui Y Bioinformatics; 2005 May; 21(10):2185-90. PubMed ID: 15746281 [TBL] [Abstract][Full Text] [Related]
10. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):665-78. PubMed ID: 10966776 [TBL] [Abstract][Full Text] [Related]
11. Generation of 3D templates of active sites of proteins with rigid prosthetic groups. Nebel JC Bioinformatics; 2006 May; 22(10):1183-9. PubMed ID: 16473871 [TBL] [Abstract][Full Text] [Related]
12. Robust prediction of consensus secondary structures using averaged base pairing probability matrices. Kiryu H; Kin T; Asai K Bioinformatics; 2007 Feb; 23(4):434-41. PubMed ID: 17182698 [TBL] [Abstract][Full Text] [Related]
13. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites. Najmanovich R; Kurbatova N; Thornton J Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810 [TBL] [Abstract][Full Text] [Related]
15. RNA structure alignment by a unit-vector approach. Capriotti E; Marti-Renom MA Bioinformatics; 2008 Aug; 24(16):i112-8. PubMed ID: 18689811 [TBL] [Abstract][Full Text] [Related]
16. Protein structure comparison by alignment of distance matrices. Holm L; Sander C J Mol Biol; 1993 Sep; 233(1):123-38. PubMed ID: 8377180 [TBL] [Abstract][Full Text] [Related]
17. A new representation for protein secondary structure prediction based on frequent patterns. Birzele F; Kramer S Bioinformatics; 2006 Nov; 22(21):2628-34. PubMed ID: 16940325 [TBL] [Abstract][Full Text] [Related]
19. Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Peng HP; Yang AS Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204 [TBL] [Abstract][Full Text] [Related]
20. Protein structure mining using a structural alphabet. Tyagi M; de Brevern AG; Srinivasan N; Offmann B Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]