BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18689895)

  • 1. Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae.
    Deem A; Barker K; Vanhulle K; Downing B; Vayl A; Malkova A
    Genetics; 2008 Aug; 179(4):1845-60. PubMed ID: 18689895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Break-induced replication and telomerase-independent telomere maintenance require Pol32.
    Lydeard JR; Jain S; Yamaguchi M; Haber JE
    Nature; 2007 Aug; 448(7155):820-3. PubMed ID: 17671506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Break-induced replication: unraveling each step.
    Liu L; Malkova A
    Trends Genet; 2022 Jul; 38(7):752-765. PubMed ID: 35459559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migrating bubble during break-induced replication drives conservative DNA synthesis.
    Saini N; Ramakrishnan S; Elango R; Ayyar S; Zhang Y; Deem A; Ira G; Haber JE; Lobachev KS; Malkova A
    Nature; 2013 Oct; 502(7471):389-92. PubMed ID: 24025772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex.
    Smith CE; Lam AF; Symington LS
    Mol Cell Biol; 2009 Mar; 29(6):1432-41. PubMed ID: 19139272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascades of genetic instability resulting from compromised break-induced replication.
    Vasan S; Deem A; Ramakrishnan S; Argueso JL; Malkova A
    PLoS Genet; 2014 Feb; 10(2):e1004119. PubMed ID: 24586181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Break-Induced Replication in Yeast.
    Osia B; Elango R; Kramara J; Roberts SA; Malkova A
    Methods Mol Biol; 2021; 2153():307-328. PubMed ID: 32840789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking break-induced replication shows that it stalls at roadblocks.
    Liu L; Yan Z; Osia BA; Twarowski J; Sun L; Kramara J; Lee RS; Kumar S; Elango R; Li H; Dang W; Ira G; Malkova A
    Nature; 2021 Feb; 590(7847):655-659. PubMed ID: 33473214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway.
    Tosato V; Sidari S; Bruschi CV
    PLoS One; 2013; 8(4):e60926. PubMed ID: 23613757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly.
    Lydeard JR; Lipkin-Moore Z; Sheu YJ; Stillman B; Burgers PM; Haber JE
    Genes Dev; 2010 Jun; 24(11):1133-44. PubMed ID: 20516198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Break-Induced Replication in Yeast.
    Elango R; Kockler Z; Liu L; Malkova A
    Methods Enzymol; 2018; 601():161-203. PubMed ID: 29523232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication.
    Roumelioti FM; Sotiriou SK; Katsini V; Chiourea M; Halazonetis TD; Gagos S
    EMBO Rep; 2016 Dec; 17(12):1731-1737. PubMed ID: 27760777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication.
    Ruiz JF; Gómez-González B; Aguilera A
    Mol Cell Biol; 2009 Oct; 29(20):5441-54. PubMed ID: 19651902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M; Aguilera A
    Mol Cell; 2010 Mar; 37(5):690-701. PubMed ID: 20227372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Break induced replication in eukaryotes: mechanisms, functions, and consequences.
    Sakofsky CJ; Malkova A
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):395-413. PubMed ID: 28427283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage.
    Mayle R; Campbell IM; Beck CR; Yu Y; Wilson M; Shaw CA; Bjergbaek L; Lupski JR; Ira G
    Science; 2015 Aug; 349(6249):742-7. PubMed ID: 26273056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis.
    Che J; Smith S; Kim YJ; Shim EY; Myung K; Lee SE
    PLoS Genet; 2015 Feb; 11(2):e1004990. PubMed ID: 25705897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres.
    Stivison EA; Young KJ; Symington LS
    Nucleic Acids Res; 2020 Dec; 48(22):12697-12710. PubMed ID: 33264397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair.
    Brocas C; Charbonnier JB; Dhérin C; Gangloff S; Maloisel L
    DNA Repair (Amst); 2010 Oct; 9(10):1098-111. PubMed ID: 20813592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase delta, suppresses genomic deletions and is involved in the mutagenic bypass pathway.
    Huang ME; Rio AG; Galibert MD; Galibert F
    Genetics; 2002 Apr; 160(4):1409-22. PubMed ID: 11973297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.