BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18689895)

  • 21. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting.
    Štafa A; Miklenić M; Zunar B; Lisnić B; Symington LS; Svetec IK
    DNA Repair (Amst); 2014 Oct; 22():12-23. PubMed ID: 25089886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mgs1 and Rad18/Rad5/Mms2 are required for survival of Saccharomyces cerevisiae mutants with novel temperature/cold sensitive alleles of the DNA polymerase delta subunit, Pol31.
    Vijeh Motlagh ND; Seki M; Branzei D; Enomoto T
    DNA Repair (Amst); 2006 Dec; 5(12):1459-74. PubMed ID: 16949354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae.
    Andersen MP; Nelson ZW; Hetrick ED; Gottschling DE
    Genetics; 2008 Jul; 179(3):1179-95. PubMed ID: 18562670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork.
    Hanna M; Ball LG; Tong AH; Boone C; Xiao W
    Mutat Res; 2007 Dec; 625(1-2):164-76. PubMed ID: 17681555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repair of base damage within break-induced replication intermediates promotes kataegis associated with chromosome rearrangements.
    Elango R; Osia B; Harcy V; Malc E; Mieczkowski PA; Roberts SA; Malkova A
    Nucleic Acids Res; 2019 Oct; 47(18):9666-9684. PubMed ID: 31392335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Break-Induced Replication: The Where, The Why, and The How.
    Kramara J; Osia B; Malkova A
    Trends Genet; 2018 Jul; 34(7):518-531. PubMed ID: 29735283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Break-induced replication mechanisms in yeast and mammals.
    Wu X; Malkova A
    Curr Opin Genet Dev; 2021 Dec; 71():163-170. PubMed ID: 34481360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA Polymerase Delta Synthesizes Both Strands during Break-Induced Replication.
    Donnianni RA; Zhou ZX; Lujan SA; Al-Zain A; Garcia V; Glancy E; Burkholder AB; Kunkel TA; Symington LS
    Mol Cell; 2019 Nov; 76(3):371-381.e4. PubMed ID: 31495565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Break-induced replication and recombinational telomere elongation in yeast.
    McEachern MJ; Haber JE
    Annu Rev Biochem; 2006; 75():111-35. PubMed ID: 16756487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements.
    Sakofsky CJ; Ayyar S; Deem AK; Chung WH; Ira G; Malkova A
    Mol Cell; 2015 Dec; 60(6):860-72. PubMed ID: 26669261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minimal Resection Takes Place during Break-Induced Replication Repair of Collapsed Replication Forks and Is Controlled by Strand Invasion.
    Jakobsen KP; Nielsen KO; Løvschal KV; Rødgaard M; Andersen AH; Bjergbæk L
    Cell Rep; 2019 Jan; 26(4):836-844.e3. PubMed ID: 30673606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors that influence bidirectional long-tract homozygosis due to double-strand break repair in Candida albicans.
    Marton T; Chauvel M; Feri A; Maufrais C; D'enfert C; Legrand M
    Genetics; 2021 May; 218(1):. PubMed ID: 33705548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RAD51-dependent break-induced replication in yeast.
    Davis AP; Symington LS
    Mol Cell Biol; 2004 Mar; 24(6):2344-51. PubMed ID: 14993274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homolog-Dependent Repair Following Dicentric Chromosome Breakage in
    Bhandari J; Karg T; Golic KG
    Genetics; 2019 Jul; 212(3):615-630. PubMed ID: 31053594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exo1 phosphorylation status controls the hydroxyurea sensitivity of cells lacking the Pol32 subunit of DNA polymerases delta and zeta.
    Doerfler L; Schmidt KH
    DNA Repair (Amst); 2014 Dec; 24():26-36. PubMed ID: 25457771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining the kinetics of break-induced replication (BIR) by the assay for monitoring BIR elongation rate (AMBER).
    Liu L; Sugawara N; Malkova A; Haber JE
    Methods Enzymol; 2021; 661():139-154. PubMed ID: 34776210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Break-induced replication is a source of mutation clusters underlying kataegis.
    Sakofsky CJ; Roberts SA; Malc E; Mieczkowski PA; Resnick MA; Gordenin DA; Malkova A
    Cell Rep; 2014 Jun; 7(5):1640-1648. PubMed ID: 24882007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Break-induced replication and genome stability.
    Sakofsky CJ; Ayyar S; Malkova A
    Biomolecules; 2012 Dec; 2(4):483-504. PubMed ID: 23767011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Break-induced replication is highly inaccurate.
    Deem A; Keszthelyi A; Blackgrove T; Vayl A; Coffey B; Mathur R; Chabes A; Malkova A
    PLoS Biol; 2011 Feb; 9(2):e1000594. PubMed ID: 21347245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms.
    Payen C; Koszul R; Dujon B; Fischer G
    PLoS Genet; 2008 Sep; 4(9):e1000175. PubMed ID: 18773114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.