BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 18689922)

  • 41. Viscoelastic properties of fibrinogen adsorbed to the surface of biomaterials used in blood-contacting medical devices.
    Weber N; Pesnell A; Bolikal D; Zeltinger J; Kohn J
    Langmuir; 2007 Mar; 23(6):3298-304. PubMed ID: 17291015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
    George PM; Lyckman AW; LaVan DA; Hegde A; Leung Y; Avasare R; Testa C; Alexander PM; Langer R; Sur M
    Biomaterials; 2005 Jun; 26(17):3511-9. PubMed ID: 15621241
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment.
    Bazaka K; Jacob MV; Crawford RJ; Ivanova EP
    Acta Biomater; 2011 May; 7(5):2015-28. PubMed ID: 21194574
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique.
    Weber N; Bolikal D; Bourke SL; Kohn J
    J Biomed Mater Res A; 2004 Mar; 68(3):496-503. PubMed ID: 14762929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions.
    Patel JD; Iwasaki Y; Ishihara K; Anderson JM
    J Biomed Mater Res A; 2005 Jun; 73(3):359-66. PubMed ID: 15800952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacterial adhesion and growth on a polymer brush-coating.
    Nejadnik MR; van der Mei HC; Norde W; Busscher HJ
    Biomaterials; 2008 Oct; 29(30):4117-21. PubMed ID: 18674814
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomaterials in laryngotracheal surgery: a solvable problem in the near future?
    Debry C; Schultz P; Vautier D
    J Laryngol Otol; 2003 Feb; 117(2):113-7. PubMed ID: 12625883
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis.
    van der Borden AJ; van der Mei HC; Busscher HJ
    Biomaterials; 2005 Nov; 26(33):6731-5. PubMed ID: 15979141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices.
    Frost MC; Reynolds MM; Meyerhoff ME
    Biomaterials; 2005 May; 26(14):1685-93. PubMed ID: 15576142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Significance of biofilms in dentistry.
    Wróblewska M; Strużycka I; Mierzwińska-Nastalska E
    Przegl Epidemiol; 2015; 69(4):739-44, 879-83. PubMed ID: 27139354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biofilm formation on clinically noninfected penile prostheses.
    Silverstein AD; Henry GD; Evans B; Pasmore M; Simmons CJ; Donatucci CF
    J Urol; 2006 Sep; 176(3):1008-11. PubMed ID: 16890680
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rising to the surface: the technology of polymeric surfaces on biomaterials.
    Williams D
    Med Device Technol; 1998 Oct; 9(8):6-8, 10, 12. PubMed ID: 10186991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anti-infection trauma devices with drug release and nonfouling surface modification.
    Wang H; Schultz K; Elias K; Stachowski M; Loose C
    J Orthop Trauma; 2014; 28 Suppl 1():S28-31. PubMed ID: 24378435
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Medical applications of polymeric materials.
    Bruck SD
    Med Prog Technol; 1982; 9(1):1-16. PubMed ID: 6752684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Review paper: principles and applications of surface analytical techniques at the vascular interface.
    Kannan RY; Salacinski HJ; Vara DS; Odlyha M; Seifalian AM
    J Biomater Appl; 2006 Jul; 21(1):5-32. PubMed ID: 16684795
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface free energy effect on bacterial retention.
    Pereni CI; Zhao Q; Liu Y; Abel E
    Colloids Surf B Biointerfaces; 2006 Mar; 48(2):143-7. PubMed ID: 16545555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significance of inoculum size in biofilm formation by staphylococci.
    Stepanović S; Djukić N; Opavski N; Djukić S
    New Microbiol; 2003 Jan; 26(1):129-32. PubMed ID: 12578321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Microbial biofilms on protective coatings of underground metal structures].
    Koptieva ZhP; Zanina VV
    Mikrobiol Z; 2008; 70(1):71-85. PubMed ID: 18416157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of molecular mobility of polymeric implants on soft tissue reactions: an in vivo study in rats.
    Andersson M; Suska F; Johansson A; Berglin M; Emanuelsson L; Elwing H; Thomsen P
    J Biomed Mater Res A; 2008 Mar; 84(3):652-60. PubMed ID: 17635028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.