BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 18689925)

  • 1. Fiber-reinforced bioactive and bioabsorbable hybrid composites.
    Huttunen M; Törmälä P; Godinho P; Kellomäki M
    Biomed Mater; 2008 Sep; 3(3):034106. PubMed ID: 18689925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation.
    Niemelä T; Niiranen H; Kellomäki M
    Acta Biomater; 2008 Jan; 4(1):156-64. PubMed ID: 17692583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.
    Jukola H; Nikkola L; Gomes ME; Chiellini F; Tukiainen M; Kellomäki M; Chiellini E; Reis RL; Ashammakhi N
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):197-203. PubMed ID: 18386831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity.
    Niemelä T; Niiranen H; Kellomäki M; Törmälä P
    Acta Biomater; 2005 Mar; 1(2):235-42. PubMed ID: 16701800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The degradation performance of chitin short fiber reinforced polycaprolactone composite in vitro].
    Duan L; Xu Z; Sun K; Zhao X; Fang J; Qin X; Gong Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):582-5. PubMed ID: 17713266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices.
    Andriano KP; Daniels AU; Heller J
    J Appl Biomater; 1992; 3(3):197-206. PubMed ID: 10147716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute.
    Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ
    Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro properties of PLLA screws and novel bioabsorbable implant with elastic nucleus to replace intervertebral disc.
    Ellä V; Kellomäki M; Törmälä P
    J Mater Sci Mater Med; 2005 Jul; 16(7):655-62. PubMed ID: 15965598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of strain rate on the mechanical properties of tricalcium phosphate/poly(L: -lactide) composites.
    Yamadi S; Kobayashi S
    J Mater Sci Mater Med; 2009 Jan; 20(1):67-74. PubMed ID: 18704650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of biodegradable and bioabsorbable bone-repaired materials].
    Ge J; Wang Y; Jia D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Feb; 21(1):151-5. PubMed ID: 15022488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications.
    Ferrández-Montero A; Lieblich M; González-Carrasco JL; Benavente R; Lorenzo V; Detsch R; Boccaccini AR; Ferrari B
    Acta Biomater; 2019 Oct; 98():114-124. PubMed ID: 31085363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.
    Wang J; Qu L; Meng X; Gao J; Li H; Wen G
    Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The degradation performance of bioabsorbable acylchitin fiber reinforced PLA composite materials in vitro and in vivo].
    Chen C; Cheng H; Sun K; Wu R; Jiang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Jun; 17(2):117-21. PubMed ID: 12557760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.
    Navarro M; Ginebra MP; Planell JA; Barrias CC; Barbosa MA
    Acta Biomater; 2005 Jul; 1(4):411-9. PubMed ID: 16701822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-L: -lactide composites.
    Kobayashi S; Sakamoto K
    J Mater Sci Mater Med; 2009 Jan; 20(1):379-86. PubMed ID: 18807265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization.
    Charles LF; Kramer ER; Shaw MT; Olson JR; Wei M
    J Mech Behav Biomed Mater; 2013 Jan; 17():269-77. PubMed ID: 23127637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioresorbable composite materials for orthopaedic devices.
    Berry M
    Med Device Technol; 2008 Sep; 19(5):69-70, 72. PubMed ID: 18947156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes?
    Krüger R; Groll J
    Biomaterials; 2012 Sep; 33(25):5887-900. PubMed ID: 22632767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.