These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 18689925)

  • 41. Use of bioabsorbable osteofixation devices in the hand.
    Waris E; Ashammakhi N; Kaarela O; Raatikainen T; Vasenius J
    J Hand Surg Br; 2004 Dec; 29(6):590-8. PubMed ID: 15542222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-vivo evaluation of a partially resorbable poly l-lactic acid/ braided bioactive glass fibers reinforced composite for load bearing fracture fixation.
    Zargar Kharazi A; Fathi MH; Manshaei M; Razavi SM
    J Mater Sci Mater Med; 2020 Jun; 31(7):57. PubMed ID: 32596771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Poly(ɛ-caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber.
    Ju D; Han L; Li F; Chen S; Dong L
    Int J Biol Macromol; 2014 Jun; 67():343-50. PubMed ID: 24704167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.
    Daniels AU; Chang MK; Andriano KP
    J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predictive modeling of the mechanical properties of particulate hydroxyapatite reinforced polymer composites.
    Balać I; Uskoković PS; Aleksić R; Uskoković D
    J Biomed Mater Res; 2002; 63(6):793-9. PubMed ID: 12418026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical and chemical characterisation of bioresorbable polymeric stent over two-year in vitro degradation.
    Naseem R; Zhao L; Silberschmidt V; Liu Y; Scaife O; Willcock H; Eswaran S; Hossainy S
    J Biomater Appl; 2019 Jul; 34(1):61-73. PubMed ID: 30952194
    [No Abstract]   [Full Text] [Related]  

  • 48. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.
    Maenz S; Kunisch E; Mühlstädt M; Böhm A; Kopsch V; Bossert J; Kinne RW; Jandt KD
    J Mech Behav Biomed Mater; 2014 Nov; 39():328-38. PubMed ID: 25171749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery.
    Ignatius AA; Ohnmacht M; Claes LE; Kreidler J; Palm F
    J Biomed Mater Res; 2001; 58(5):564-9. PubMed ID: 11505432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Progress of researches on carbon/carbon composites used in human loaded bones].
    Sui J; Li M; Lü Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):686-9. PubMed ID: 15357462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New multifunctional anti-osteolytic releasing bioabsorbable implant.
    Huolman R; Ashammakhi N
    J Craniofac Surg; 2007 Mar; 18(2):295-301. PubMed ID: 17414278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.
    Misra SK; Valappil SP; Roy I; Boccaccini AR
    Biomacromolecules; 2006 Aug; 7(8):2249-58. PubMed ID: 16903667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation.
    Wong HM; Wu S; Chu PK; Cheng SH; Luk KD; Cheung KM; Yeung KW
    Biomaterials; 2013 Sep; 34(29):7016-32. PubMed ID: 23787111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials.
    Zhang du J; Zhang LF; Xiong ZC; Bai W; Xiong CD
    J Mater Sci Mater Med; 2009 Oct; 20(10):1971-8. PubMed ID: 19449200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Polymer for Application as a Matrix Phase in a Concept of In Situ Curable Bioresorbable Bioactive Load-Bearing Continuous Fiber Reinforced Composite Fracture Fixation Plates.
    Plyusnin A; He J; Elschner C; Nakamura M; Kulkova J; Spickenheuer A; Scheffler C; Lassila LVJ; Moritz N
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33652632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of watertight and bioabsorbable synthetic dural substitutes.
    Mukai T; Shirahama N; Tominaga B; Ohno K; Koyama Y; Takakuda K
    Artif Organs; 2008 Jun; 32(6):473-83. PubMed ID: 18422798
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.
    Wang F; Mohammed A; Li C; Ge P; Wang L; King MW
    Biomed Mater Eng; 2014; 24(6):2127-33. PubMed ID: 25226910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
    Juhasz JA; Best SM; Brooks R; Kawashita M; Miyata N; Kokubo T; Nakamura T; Bonfield W
    Biomaterials; 2004 Mar; 25(6):949-55. PubMed ID: 14615158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Implantable composite devices of unsintered hydroxyapatite and poly-l-lactide with dispersive marbling morphology to enhance in vivo bioactivity and bioresorbability.
    Morizane K; Shikinami Y; Fujibayashi S; Goto K; Otsuki B; Kawai T; Shimizu T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():698-706. PubMed ID: 30678958
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.