These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
725 related articles for article (PubMed ID: 18689928)
1. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites. Liu C; Chen CW; Ducheyne P Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928 [TBL] [Abstract][Full Text] [Related]
2. Calcium phosphate formation at the surface of bioactive glass in vitro. Andersson OH; Kangasniemi I J Biomed Mater Res; 1991 Aug; 25(8):1019-30. PubMed ID: 1918106 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
4. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Guo H; Wei J; Liu CS Biomed Mater; 2006 Dec; 1(4):193-7. PubMed ID: 18458405 [TBL] [Abstract][Full Text] [Related]
5. In vitro Ca-P precipitation on biodegradable thermoplastic composite of poly(epsilon-caprolactone-co-DL-lactide) and bioactive glass (S53P4). Jaakkola T; Rich J; Tirri T; Närhi T; Jokinen M; Seppälä J; Yli-Urpo A Biomaterials; 2004 Feb; 25(4):575-81. PubMed ID: 14607495 [TBL] [Abstract][Full Text] [Related]
6. Solution effects on the surface reactions of three bioactive glass compositions. Filgueiras MR; LaTorre G; Hench LL J Biomed Mater Res; 1993 Dec; 27(12):1485-93. PubMed ID: 8113235 [TBL] [Abstract][Full Text] [Related]
7. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Lu HH; Tang A; Oh SC; Spalazzi JP; Dionisio K Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111 [TBL] [Abstract][Full Text] [Related]
8. The effect of in vitro modeling conditions on the surface reactions of bioactive glass. Radin S; Ducheyne P; Rothman B; Conti A J Biomed Mater Res; 1997 Dec; 37(3):363-75. PubMed ID: 9368141 [TBL] [Abstract][Full Text] [Related]
9. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Sriranganathan D; Kanwal N; Hing KA; Hill RG J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556 [TBL] [Abstract][Full Text] [Related]
10. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. Radin SR; Ducheyne P J Biomed Mater Res; 1993 Jan; 27(1):35-45. PubMed ID: 8380597 [TBL] [Abstract][Full Text] [Related]
11. Dissolution and scanning electron microscopic studies of Ca,P particle-containing bioactive glasses. Kangasniemi IM; Vedel E; de Blick-Hogerworst J; Yli-Urpo AU; de Groot K J Biomed Mater Res; 1993 Oct; 27(10):1225-33. PubMed ID: 8245037 [TBL] [Abstract][Full Text] [Related]
12. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
13. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects. El-Ghannam A; Amin H; Nasr T; Shama A Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588 [TBL] [Abstract][Full Text] [Related]
15. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Fan Y; Duan K; Wang R Biomaterials; 2005 May; 26(14):1623-32. PubMed ID: 15576136 [TBL] [Abstract][Full Text] [Related]
16. Solution effects on the surface reactions of a bioactive glass. Filgueiras MR; La Torre G; Hench LL J Biomed Mater Res; 1993 Apr; 27(4):445-53. PubMed ID: 8385143 [TBL] [Abstract][Full Text] [Related]
17. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. Lopez-Heredia MA; Pattipeilohy J; Hsu S; Grykien M; van der Weijden B; Leeuwenburgh SC; Salmon P; Wolke JG; Jansen JA J Biomed Mater Res A; 2013 Feb; 101(2):478-90. PubMed ID: 22927324 [TBL] [Abstract][Full Text] [Related]
18. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Toworfe GK; Composto RJ; Shapiro IM; Ducheyne P Biomaterials; 2006 Feb; 27(4):631-42. PubMed ID: 16081155 [TBL] [Abstract][Full Text] [Related]
19. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
20. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. Sadiasa A; Sarkar SK; Franco RA; Min YK; Lee BT J Biomater Appl; 2014 Jan; 28(5):739-56. PubMed ID: 23470354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]