BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18689929)

  • 1. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions.
    Lam CX; Savalani MM; Teoh SH; Hutmacher DW
    Biomed Mater; 2008 Sep; 3(3):034108. PubMed ID: 18689929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of hydroxyapatite particles on in vitro degradation behavior of poly epsilon-caprolactone-based composite scaffolds.
    Guarino V; Taddei P; Di Foggia M; Fagnano C; Ciapetti G; Ambrosio L
    Tissue Eng Part A; 2009 Nov; 15(11):3655-68. PubMed ID: 19496680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM
    J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo.
    Lam CX; Hutmacher DW; Schantz JT; Woodruff MA; Teoh SH
    J Biomed Mater Res A; 2009 Sep; 90(3):906-19. PubMed ID: 18646204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H; Du R; Chang J
    J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation.
    Ang KC; Leong KF; Chua CK; Chandrasekaran M
    J Biomed Mater Res A; 2007 Mar; 80(3):655-60. PubMed ID: 17051539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralization of calcium disilicide in porous polycaprolactone scaffolds.
    Seregin VV; Coffer JL
    Biomaterials; 2006 Sep; 27(27):4745-54. PubMed ID: 16740307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.
    Ahmed I; Parsons AJ; Palmer G; Knowles JC; Walker GS; Rudd CD
    Acta Biomater; 2008 Sep; 4(5):1307-14. PubMed ID: 18448401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.
    Navarro M; Ginebra MP; Planell JA; Barrias CC; Barbosa MA
    Acta Biomater; 2005 Jul; 1(4):411-9. PubMed ID: 16701822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on in vitro degradation behavior of a poly(glycolide-co-L-lactide) monofilament.
    Deng M; Chen G; Burkley D; Zhou J; Jamiolkowski D; Xu Y; Vetrecin R
    Acta Biomater; 2008 Sep; 4(5):1382-91. PubMed ID: 18442954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes.
    Franco-Marquès E; Méndez JA; Gironès J; Ginebra MP; Pèlach MA
    Acta Biomater; 2009 Oct; 5(8):2953-62. PubMed ID: 19435615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic permeability of polyglycolic acid scaffolds as a function of biomaterial degradation.
    Li J; Mak AF
    J Biomater Appl; 2005 Jan; 19(3):253-66. PubMed ID: 15613383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dexamethasone loaded bioresorbable films used in medical support devices: structure, degradation, crystallinity and drug release.
    Zilberman M
    Acta Biomater; 2005 Nov; 1(6):615-24. PubMed ID: 16701842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
    Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD
    Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of absorbable poly(ortho esters) for use in surgical implants.
    Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J
    J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.