BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18690025)

  • 1. Potassium channel gating in the absence of the highly conserved glycine of the inner transmembrane helix.
    Rosenhouse-Dantsker A; Logothetis DE
    Channels (Austin); 2007; 1(3):189-97. PubMed ID: 18690025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New roles for a key glycine and its neighboring residue in potassium channel gating.
    Rosenhouse-Dantsker A; Logothetis DE
    Biophys J; 2006 Oct; 91(8):2860-73. PubMed ID: 16877518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1.
    Kahanovitch U; Tsemakhovich V; Berlin S; Rubinstein M; Styr B; Castel R; Peleg S; Tabak G; Dessauer CW; Ivanina T; Dascal N
    J Physiol; 2014 Dec; 592(24):5373-90. PubMed ID: 25384780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. betaL-betaM loop in the C-terminal domain of G protein-activated inwardly rectifying K(+) channels is important for G(betagamma) subunit activation.
    Finley M; Arrabit C; Fowler C; Suen KF; Slesinger PA
    J Physiol; 2004 Mar; 555(Pt 3):643-57. PubMed ID: 14724209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein {beta}{gamma} gating confers volatile anesthetic inhibition to Kir3 channels.
    Styer AM; Mirshahi UL; Wang C; Girard L; Jin T; Logothetis DE; Mirshahi T
    J Biol Chem; 2010 Dec; 285(53):41290-9. PubMed ID: 21044958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes.
    Kienitz MC; Mintert-Jancke E; Hertel F; Pott L
    Cell Signal; 2014 Jun; 26(6):1182-92. PubMed ID: 24576551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.
    Shang L; Tucker SJ
    Eur Biophys J; 2008 Feb; 37(2):165-71. PubMed ID: 17657484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits.
    Rusinova R; Mirshahi T; Logothetis DE
    J Biol Chem; 2007 Nov; 282(47):34019-30. PubMed ID: 17872944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit.
    Calloe K; Ravn LS; Schmitt N; Sui JL; Duno M; Haunso S; Grunnet M; Svendsen JH; Olesen SP
    Biochem Biophys Res Commun; 2007 Dec; 364(4):889-95. PubMed ID: 17967416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions.
    Petit-Jacques J; Sui JL; Logothetis DE
    J Gen Physiol; 1999 Nov; 114(5):673-84. PubMed ID: 10532964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1).
    Yokogawa M; Osawa M; Takeuchi K; Mase Y; Shimada I
    J Biol Chem; 2011 Jan; 286(3):2215-23. PubMed ID: 21075842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical determinants of the G protein gamma subunits in the Gbetagamma stimulation of G protein-activated inwardly rectifying potassium (GIRK) channel activity.
    Peng L; Mirshahi T; Zhang H; Hirsch JP; Logothetis DE
    J Biol Chem; 2003 Dec; 278(50):50203-11. PubMed ID: 12975366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Critical Gating Switch at a Modulatory Site in Neuronal Kir3 Channels.
    Adney SK; Ha J; Meng XY; Kawano T; Logothetis DE
    J Neurosci; 2015 Oct; 35(42):14397-405. PubMed ID: 26490875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The (beta)gamma subunits of G proteins gate a K(+) channel by pivoted bending of a transmembrane segment.
    Jin T; Peng L; Mirshahi T; Rohacs T; Chan KW; Sanchez R; Logothetis DE
    Mol Cell; 2002 Sep; 10(3):469-81. PubMed ID: 12408817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Gbetagamma-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels.
    Sadja R; Smadja K; Alagem N; Reuveny E
    Neuron; 2001 Mar; 29(3):669-80. PubMed ID: 11301026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels.
    Mahajan R; Ha J; Zhang M; Kawano T; Kozasa T; Logothetis DE
    Sci Signal; 2013 Aug; 6(288):ra69. PubMed ID: 23943609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-bonding dynamics between adjacent blades in G-protein beta-subunit regulates GIRK channel activation.
    Mirshahi T; Logothetis DE; Rosenhouse-Dantsker A
    Biophys J; 2006 Apr; 90(8):2776-85. PubMed ID: 16428273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.