These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18690047)

  • 41. Na+/Ca2+ exchange and cellular Ca2+ homeostasis.
    Reeves JP
    J Bioenerg Biomembr; 1998 Apr; 30(2):151-60. PubMed ID: 9672237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells.
    Magyar CE; White KE; Rojas R; Apodaca G; Friedman PA
    Am J Physiol Renal Physiol; 2002 Jul; 283(1):F29-40. PubMed ID: 12060584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The regulation of the Na/Ca exchanger and plasmalemmal Ca2+ ATPase by other proteins.
    Ruknudin AM; Lakatta EG
    Ann N Y Acad Sci; 2007 Mar; 1099():86-102. PubMed ID: 17446448
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1.
    Henderson SA; Goldhaber JI; So JM; Han T; Motter C; Ngo A; Chantawansri C; Ritter MR; Friedlander M; Nicoll DA; Frank JS; Jordan MC; Roos KP; Ross RS; Philipson KD
    Circ Res; 2004 Sep; 95(6):604-11. PubMed ID: 15308581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular determinants of allosteric regulation in NCX proteins.
    Giladi M; Khananshvili D
    Adv Exp Med Biol; 2013; 961():35-48. PubMed ID: 23224868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe.
    Baazov D; Wang X; Khananshvili D
    Biochemistry; 1999 Feb; 38(5):1435-45. PubMed ID: 9931008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In the squid axon Na+/Ca2+ exchanger the state of the Ca i-regulatory site influences the affinities of the intra- and extracellular transport sites for Na+ and Ca2+.
    DiPolo R; Beaugé L
    Pflugers Arch; 2008 Jun; 456(3):623-33. PubMed ID: 18172600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sodium-calcium exchange: a molecular perspective.
    Philipson KD; Nicoll DA
    Annu Rev Physiol; 2000; 62():111-33. PubMed ID: 10845086
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.
    Lytton J
    Biochem J; 2007 Sep; 406(3):365-82. PubMed ID: 17716241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New modes of exchanger regulation: physiological implications.
    Reeves JP; Condrescu M; Urbanczyk J; Chernysh O
    Ann N Y Acad Sci; 2007 Mar; 1099():64-77. PubMed ID: 17446446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger.
    Lee SY; Giladi M; Bohbot H; Hiller R; Chung KY; Khananshvili D
    FASEB J; 2016 Mar; 30(3):1356-66. PubMed ID: 26644350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single alpha-domain constructs of the Na+/Ca2+ exchanger, NCLX, oligomerize to form a functional exchanger.
    Palty R; Hershfinkel M; Yagev O; Saar D; Barkalifa R; Khananshvili D; Peretz A; Grossman Y; Sekler I
    Biochemistry; 2006 Oct; 45(39):11856-66. PubMed ID: 17002286
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hypoxia delays the intracellular Ca2+ clearance by Na+-Ca2+ exchanger in human adult cardiac myocytes.
    Park SI; Park EJ; Kim NH; Baek WK; Lee YT; Lee CJ; Suh CK
    Yonsei Med J; 2001 Jun; 42(3):333-7. PubMed ID: 11456400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ionic regulation of the cardiac sodium-calcium exchanger.
    Reeves JP; Condrescu M
    Channels (Austin); 2008; 2(5):322-8. PubMed ID: 18989096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of the Na+/Ca2+ exchanger in rat pancreatic ducts.
    Ankorina-Stark I; Amstrup J; Novak I
    J Membr Biol; 2002 Mar; 186(1):43-53. PubMed ID: 11891588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Key role of a PtdIns-4,5P2 micro domain in ionic regulation of the mammalian heart Na+/Ca2+ exchanger.
    Berberián G; Forcato D; Beaugé L
    Cell Calcium; 2009 Jun; 45(6):546-53. PubMed ID: 19394081
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins.
    Giladi M; Tal I; Khananshvili D
    Front Physiol; 2016; 7():30. PubMed ID: 26903880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of antisense oligonucleotides to the cardiac Na+/Ca2+ exchanger on calcium dynamics in cultured cardiac myocytes.
    Takahashi K; Azuma M; Huschenbett J; Michaelis ML; Azuma J
    Biochem Biophys Res Commun; 1999 Jun; 260(1):117-21. PubMed ID: 10381353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphoarginine regulation of the squid nerve Na+/Ca2+ exchanger: metabolic pathway and exchanger-ligand interactions different from those seen with ATP.
    DiPolo R; Berberián G; Beaugé L
    J Physiol; 2004 Jan; 554(Pt 2):387-401. PubMed ID: 14578490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In bovine heart Na+/Ca2+ exchanger maximal Ca2+i affinity requires simultaneously high pHi and PtdIns-4,5-P2 binding to the carrier.
    Posada V; Beaugé L; Berberián G
    Ann N Y Acad Sci; 2007 Mar; 1099():171-4. PubMed ID: 17446454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.