BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 18690214)

  • 1. RNA interference screen for human genes associated with West Nile virus infection.
    Krishnan MN; Ng A; Sukumaran B; Gilfoy FD; Uchil PD; Sultana H; Brass AL; Adametz R; Tsui M; Qian F; Montgomery RR; Lev S; Mason PW; Koski RA; Elledge SJ; Xavier RJ; Agaisse H; Fikrig E
    Nature; 2008 Sep; 455(7210):242-5. PubMed ID: 18690214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication.
    Fernandez-Garcia MD; Meertens L; Bonazzi M; Cossart P; Arenzana-Seisdedos F; Amara A
    J Virol; 2011 Mar; 85(6):2980-9. PubMed ID: 21191016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodology for Identifying Host Factors Involved in West Nile Virus Infection.
    Krishnan MN
    Methods Mol Biol; 2016; 1435():115-27. PubMed ID: 27188554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.
    Göertz GP; Fros JJ; Miesen P; Vogels CBF; van der Bent ML; Geertsema C; Koenraadt CJM; van Rij RP; van Oers MM; Pijlman GP
    J Virol; 2016 Nov; 90(22):10145-10159. PubMed ID: 27581979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection.
    van Tol S; Atkins C; Bharaj P; Johnson KN; Hage A; Freiberg AN; Rajsbaum R
    J Virol; 2020 Jan; 94(2):. PubMed ID: 31694946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.
    Reid CR; Hobman TC
    Virology; 2017 Jan; 500():169-177. PubMed ID: 27821284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Host Protein Reticulon 3.1A Is Utilized by Flaviviruses to Facilitate Membrane Remodelling.
    Aktepe TE; Liebscher S; Prier JE; Simmons CP; Mackenzie JM
    Cell Rep; 2017 Nov; 21(6):1639-1654. PubMed ID: 29117567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.
    Smith JL; Jeng S; McWeeney SK; Hirsch AJ
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection.
    Kobayashi S; Orba Y; Yamaguchi H; Takahashi K; Sasaki M; Hasebe R; Kimura T; Sawa H
    Virus Res; 2014 Oct; 191():83-91. PubMed ID: 25091564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.
    Martín-Acebes MA; Blázquez AB; Jiménez de Oya N; Escribano-Romero E; Saiz JC
    PLoS One; 2011; 6(9):e24970. PubMed ID: 21949814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STAT5: a Target of Antagonism by Neurotropic Flaviviruses.
    Zimmerman MG; Bowen JR; McDonald CE; Young E; Baric RS; Pulendran B; Suthar MS
    J Virol; 2019 Dec; 93(23):. PubMed ID: 31534033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence.
    McAuley AJ; Torres M; Plante JA; Huang CY; Bente DA; Beasley DWC
    J Virol; 2016 May; 90(9):4757-4770. PubMed ID: 26912625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection.
    Luo H; Winkelmann ER; Zhu S; Ru W; Mays E; Silvas JA; Vollmer LL; Gao J; Peng BH; Bopp NE; Cromer C; Shan C; Xie G; Li G; Tesh R; Popov VL; Shi PY; Sun SC; Wu P; Klein RS; Tang SJ; Zhang W; Aguilar PV; Wang T
    J Clin Invest; 2018 Nov; 128(11):4980-4991. PubMed ID: 30247157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus.
    Phongphaew W; Kobayashi S; Sasaki M; Carr M; Hall WW; Orba Y; Sawa H
    Virus Res; 2017 Jan; 228():114-123. PubMed ID: 27914931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of West Nile virus Replication by Bifunctional siRNA Targeting the NS2A and NS5 Conserved Region.
    Karothia D; Dash PK; Parida M; Bhagyawant S; Kumar JS
    Curr Gene Ther; 2018; 18(3):180-190. PubMed ID: 29874999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological Inhibition of Protein Kinase C Reduces West Nile Virus Replication.
    Blázquez AB; Vázquez-Calvo Á; Martín-Acebes MA; Saiz JC
    Viruses; 2018 Feb; 10(2):. PubMed ID: 29473907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells.
    O'Neal JT; Upadhyay AA; Wolabaugh A; Patel NB; Bosinger SE; Suthar MS
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30626670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection.
    Natekar JP; Rothan HA; Arora K; Strate PG; Kumar M
    Viruses; 2019 Dec; 12(1):. PubMed ID: 31861621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication.
    Giraud E; Del Val CO; Caillet-Saguy C; Zehrouni N; Khou C; Caillet J; Jacob Y; Pardigon N; Wolff N
    Sci Rep; 2021 Feb; 11(1):3266. PubMed ID: 33547379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. West Nile virus genome amplification requires the functional activities of the proteasome.
    Gilfoy F; Fayzulin R; Mason PW
    Virology; 2009 Mar; 385(1):74-84. PubMed ID: 19101004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.