These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18690238)
1. Experimental visualization of lithium diffusion in LixFePO4. Nishimura S; Kobayashi G; Ohoyama K; Kanno R; Yashima M; Yamada A Nat Mater; 2008 Sep; 7(9):707-11. PubMed ID: 18690238 [TBL] [Abstract][Full Text] [Related]
2. Room-temperature miscibility gap in LixFePO4. Yamada A; Koizumi H; Nishimura S; Sonoyama N; Kanno R; Yonemura M; Nakamura T; Kobayashi Y Nat Mater; 2006 May; 5(5):357-60. PubMed ID: 16617345 [TBL] [Abstract][Full Text] [Related]
3. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
4. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
5. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Ellis BL; Makahnouk WR; Makimura Y; Toghill K; Nazar LF Nat Mater; 2007 Oct; 6(10):749-53. PubMed ID: 17828278 [TBL] [Abstract][Full Text] [Related]
6. Analysis of heat generation of lithium ion rechargeable batteries used in implantable battery systems for driving undulation pump ventricular assist device. Okamoto E; Nakamura M; Akasaka Y; Inoue Y; Abe Y; Chinzei T; Saito I; Isoyama T; Mochizuki S; Imachi K; Mitamura Y Artif Organs; 2007 Jul; 31(7):538-41. PubMed ID: 17584478 [TBL] [Abstract][Full Text] [Related]
7. Molecular wiring of insulators: charging and discharging electrode materials for high-energy lithium-ion batteries by molecular charge transport layers. Wang Q; Evans N; Zakeeruddin SM; Exnar I; Grätzel M J Am Chem Soc; 2007 Mar; 129(11):3163-7. PubMed ID: 17326635 [TBL] [Abstract][Full Text] [Related]
8. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Meng YS; Arroyo-de Dompablo ME Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876 [TBL] [Abstract][Full Text] [Related]
9. Electrodes with high power and high capacity for rechargeable lithium batteries. Kang K; Meng YS; Bréger J; Grey CP; Ceder G Science; 2006 Feb; 311(5763):977-80. PubMed ID: 16484487 [TBL] [Abstract][Full Text] [Related]
10. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Delmas C; Maccario M; Croguennec L; Le Cras F; Weill F Nat Mater; 2008 Aug; 7(8):665-71. PubMed ID: 18641656 [TBL] [Abstract][Full Text] [Related]
11. Nanomaterials for rechargeable lithium batteries. Bruce PG; Scrosati B; Tarascon JM Angew Chem Int Ed Engl; 2008; 47(16):2930-46. PubMed ID: 18338357 [TBL] [Abstract][Full Text] [Related]
12. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Aurbach D; Weissman I; Gofer Y; Levi E Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532 [TBL] [Abstract][Full Text] [Related]
13. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells. Scrosati B Chem Rec; 2005; 5(5):286-97. PubMed ID: 16211622 [TBL] [Abstract][Full Text] [Related]
14. Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries. Li G; Pang S; Jiang L; Guo Z; Zhang Z J Phys Chem B; 2006 May; 110(19):9383-6. PubMed ID: 16686480 [TBL] [Abstract][Full Text] [Related]
15. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4. Sharma N; Guo X; Du G; Guo Z; Wang J; Wang Z; Peterson VK J Am Chem Soc; 2012 May; 134(18):7867-73. PubMed ID: 22482702 [TBL] [Abstract][Full Text] [Related]
16. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. Maekawa H; Matsuo M; Takamura H; Ando M; Noda Y; Karahashi T; Orimo S J Am Chem Soc; 2009 Jan; 131(3):894-5. PubMed ID: 19119813 [TBL] [Abstract][Full Text] [Related]
17. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Islam MS; Fisher CA Chem Soc Rev; 2014 Jan; 43(1):185-204. PubMed ID: 24202440 [TBL] [Abstract][Full Text] [Related]
18. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. Nishimura S; Nakamura M; Natsui R; Yamada A J Am Chem Soc; 2010 Oct; 132(39):13596-7. PubMed ID: 20831186 [TBL] [Abstract][Full Text] [Related]
19. High-performance lithium battery anodes using silicon nanowires. Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447 [TBL] [Abstract][Full Text] [Related]
20. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]