BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18690385)

  • 1. [Vagal control of cardiac functions and vagal protection of ischemic myocardium].
    Zang WJ; Sun L; Yu XJ; Lv J; Chen LN; Liu BH
    Sheng Li Xue Bao; 2008 Aug; 60(4):443-52. PubMed ID: 18690385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in protective effects of vagal nerve and acetylcholine against ischemia injury to myocardium].
    Zang WJ; Lu J; Li DL; Jia B; Xu XL; Sun L
    Sheng Li Ke Xue Jin Zhan; 2006 Oct; 37(4):292-6. PubMed ID: 17262960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory recovery of vagal control of hemodynamics after unilateral vagotomy.
    Chen LN; Zang WJ; Yu XJ; Liu J; Li DL; Kong SS; Lu J; Xu XL
    Physiol Res; 2008; 57(1):119-132. PubMed ID: 17223733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in the study of vagal control of cardiac ventricles.
    Zang WJ; Chen LN; Yu XJ
    Sheng Li Xue Bao; 2005 Dec; 57(6):659-72. PubMed ID: 16344889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accentuated antagonism in vagal heart rate control mediated through muscarinic potassium channels.
    Mizuno M; Kamiya A; Kawada T; Miyamoto T; Shimizu S; Shishido T; Sugimachi M
    J Physiol Sci; 2008 Dec; 58(6):381-8. PubMed ID: 18842163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine-sensitive muscarinic K+ channels in mammalian ventricular myocytes.
    Koumi S; Wasserstrom JA
    Am J Physiol; 1994 May; 266(5 Pt 2):H1812-21. PubMed ID: 8203580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Muscarinic modulation of cardiac activity].
    Sauviat MP
    J Soc Biol; 1999; 193(6):469-80. PubMed ID: 10783705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium.
    Kakinuma Y; Akiyama T; Sato T
    FEBS J; 2009 Sep; 276(18):5111-25. PubMed ID: 19674111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury.
    Intachai K; C Chattipakorn S; Chattipakorn N; Shinlapawittayatorn K
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Different effects of acetylcholine on the action potential and force contraction in guinea pig atrial and ventricular myocardium].
    Fang P; Zang WJ; Yu XJ; Sun Q; Zang YM; Lu J
    Sheng Li Xue Bao; 2002 Aug; 54(4):311-6. PubMed ID: 12195279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of DiFrancesco-Noble equations to simulate the effects of vagal stimulation on in vivo mammalian sinoatrial node electrical activity.
    Dokos S; Celler BG; Lovell NH
    Ann Biomed Eng; 1993; 21(4):321-35. PubMed ID: 8214817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of right and left vagal stimulation on left ventricular acetylcholine levels in the cat.
    Akiyama T; Yamazaki T
    Acta Physiol Scand; 2001 May; 172(1):11-6. PubMed ID: 11437735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal modulation of cardiac ventricular arrhythmia.
    Ng GA
    Exp Physiol; 2014 Feb; 99(2):295-9. PubMed ID: 24014808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation by neostigmine of responses to vagal nerve stimulation in the sinus venosus of the toad.
    Bramich NJ; Brock JA; Hirst GD
    Auton Neurosci; 2000 Aug; 82(3):109-14. PubMed ID: 11023616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of postconditioning of adenosine and acetylcholine on the ischemic isolated rat ventricular myocytes.
    Lu J; Zang WJ; Yu XJ; Jia B; Chorvatova A; Sun L
    Eur J Pharmacol; 2006 Nov; 549(1-3):133-9. PubMed ID: 16982051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac vagal control in a knock-in mouse model of dilated cardiomyopathy with a troponin mutation.
    Zhan DY; Du CK; Akiyama T; Morimoto S; Shimizu S; Kawada T; Shirai M; Pearson JT
    Auton Neurosci; 2017 Jul; 205():33-40. PubMed ID: 28344023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive activity of the acetylcholine-activated potassium current IK,ACh in cardiomyocytes.
    Voigt N; Abu-Taha I; Heijman J; Dobrev D
    Adv Pharmacol; 2014; 70():393-409. PubMed ID: 24931203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagus nerve stimulation protects against ventricular fibrillation independent of muscarinic receptor activation.
    Brack KE; Coote JH; Ng GA
    Cardiovasc Res; 2011 Aug; 91(3):437-46. PubMed ID: 21576131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tertiapin-Q and ZD7288 on changes in sinoatrial pacemaker rhythm during vagal stimulation.
    Han SY; Bolter CP
    Auton Neurosci; 2015 Dec; 193():117-26. PubMed ID: 26549880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Role of Regulator of G-Protein Signaling 5 in the Protection of Vagal-Related Bradycardia and Atrial Tachyarrhythmia.
    Qin M; Liu X; Liu T; Wang T; Huang C
    J Am Heart Assoc; 2016 Mar; 5(3):e002783. PubMed ID: 26961238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.