These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18690714)

  • 1. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis.
    Boehr DD; Dyson HJ; Wright PE
    Biochemistry; 2008 Sep; 47(35):9227-33. PubMed ID: 18690714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism.
    Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.
    Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE
    J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.
    Liu CT; Layfield JP; Stewart RJ; French JB; Hanoian P; Asbury JB; Hammes-Schiffer S; Benkovic SJ
    J Am Chem Soc; 2014 Jul; 136(29):10349-60. PubMed ID: 24977791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Biochemistry; 2004 Jan; 43(2):374-83. PubMed ID: 14717591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase.
    Weikl TR; Boehr DD
    Proteins; 2012 Oct; 80(10):2369-83. PubMed ID: 22641560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis.
    Hughes RL; Johnson LA; Behiry EM; Loveridge EJ; Allemann RK
    Biochemistry; 2017 Apr; 56(15):2126-2133. PubMed ID: 28368101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the Met
    Mhashal AR; Vardi-Kilshtain A; Kohen A; Major DT
    J Biol Chem; 2017 Aug; 292(34):14229-14239. PubMed ID: 28620051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the occluded conformation in bacterial dihydrofolate reductases.
    Behiry EM; Luk LY; Matthews SM; Loveridge EJ; Allemann RK
    Biochemistry; 2014 Jul; 53(29):4761-8. PubMed ID: 25014833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.
    Oyen D; Fenwick RB; Aoto PC; Stanfield RL; Wilson IA; Dyson HJ; Wright PE
    J Am Chem Soc; 2017 Aug; 139(32):11233-11240. PubMed ID: 28737940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.
    Loveridge EJ; Tey LH; Allemann RK
    J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.