These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18690753)

  • 1. Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides.
    Verhagen E; Dionne JA; Kuipers LK; Atwater HA; Polman A
    Nano Lett; 2008 Sep; 8(9):2925-9. PubMed ID: 18690753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon polaritons in metal stripes and wires.
    Krenn JR; Weeber JC
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):739-56. PubMed ID: 15306491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Few-Cycle Surface Plasmon Polaritons.
    Komatsu K; Pápa Z; Jauk T; Bernecker F; Tóth L; Lackner F; Ernst WE; Ditlbacher H; Krenn JR; Ossiander M; Dombi P; Schultze M
    Nano Lett; 2024 Feb; 24(8):2637-2642. PubMed ID: 38345784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries.
    Dionne JA; Verhagen E; Polman A; Atwater HA
    Opt Express; 2008 Nov; 16(23):19001-17. PubMed ID: 19581993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scattering of spoof surface plasmon polaritons in defect-rich THz waveguides.
    Klein AK; Basden A; Hammler J; Tyas L; Cooke M; Balocco C; Zeze D; Girkin JM; Gallant A
    Sci Rep; 2019 Apr; 9(1):6288. PubMed ID: 31000800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires.
    Paul A; Zhen YR; Wang Y; Chang WS; Xia Y; Nordlander P; Link S
    Nano Lett; 2014 Jun; 14(6):3628-33. PubMed ID: 24798451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial.
    Gao X; Zhou L; Cui TJ
    Sci Rep; 2015 Mar; 5():9250. PubMed ID: 25783166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping.
    Yin A; Jing H; Wu Z; He Q; Wang Y; Lin Z; Liu Y; Ding M; Xu X; Fei Z; Jiang J; Huang Y; Duan X
    Research (Wash D C); 2019; 2019():8304824. PubMed ID: 31922140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit.
    Chen J; Sun C; Li H; Gong Q
    Nanoscale; 2014 Nov; 6(22):13487-93. PubMed ID: 25204379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks.
    Zhang M; Wang Z
    Opt Express; 2019 Jan; 27(1):303-321. PubMed ID: 30645376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Communication with Nanoplasmonic Data Carriers: Macroscale Propagation of Nanophotonic Plasmon Polaritons Probed by Near-Field Nanoimaging.
    Cohen M; Abulafia Y; Lev D; Lewis A; Shavit R; Zalevsky Z
    Nano Lett; 2017 Sep; 17(9):5181-5186. PubMed ID: 28467084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation-Invariant Space-Time Plasmonic Pulse in Subwavelength MIM Waveguide.
    Cho ES; Lee SY
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling wave-vector of propagating surface plasmon polaritons on single-crystalline gold nanoplates.
    Luo S; Yang H; Yang Y; Zhao D; Chen X; Qiu M; Li Q
    Sci Rep; 2015 Aug; 5():13424. PubMed ID: 26302955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Propagation of Surface Plasmon Polaritons on Graphene-Protected Single-Crystalline Silver Films.
    Hong HY; Ha JS; Lee SS; Park JH
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):5014-5022. PubMed ID: 28085252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range.
    Wang K; Mittleman DM
    Phys Rev Lett; 2006 Apr; 96(15):157401. PubMed ID: 16712193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging of surface plasmon polaritons in low-loss highly metallic titanium nitride thin films in visible and infrared regimes.
    Gadalla MN; Chaudhary K; Zgrabik CM; Capasso F; Hu EL
    Opt Express; 2020 May; 28(10):14536-14546. PubMed ID: 32403492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanofocusing in a dielectric wedge.
    Verhagen E; Kuipers LK; Polman A
    Nano Lett; 2010 Sep; 10(9):3665-9. PubMed ID: 20722401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design of composite nanowires for extended reach of surface plasmon-polaritons.
    Handapangoda D; Premaratne M; Rukhlenko ID; Jagadish C
    Opt Express; 2011 Aug; 19(17):16058-74. PubMed ID: 21934969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface.
    Bozhevolnyi SI; Volkov VS; Leosson K; Erland J
    Opt Lett; 2001 May; 26(10):734-6. PubMed ID: 18040436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.